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Abstract

Understanding particle size segregation is one of the great challenge in fluvial geomorphology. It is still
notoriously difficult to predict sediment transport more accurately than within one order of magnitude.
One of the main origin of this difficulty is particle size segregation, a granular process of particle sorting
in the sediment bed. Size segregation is therefore a grain scale process impacting the morphological scale.

This PhD presents a numerical study of size segregation as a granular process during bedload transport.
A coupled fluid discrete element method (DEM) is used to study the infiltration of small particles in
a large particle bed. This configuration, close to granular flows on erodible bed, is characterized by a
particle velocity profile, a shear rate profile and an inertial number profile exponentially decreasing into
the bed. It presents a particular segregation phenomenology with small particles infiltrating the bed as
a travelling wave, the velocity being controlled by the inertial number at the bottom of the layer. The
segregation velocity is observed dependent on the local small particle concentrations and on the size
ratio. The segregation problem is also analyzed with an advection diffusion model. With advection and
diffusion coefficients both proportional to the inertial number, the continuum model perfectly reproduces
the dynamics observed in the DEM results.

Very recently, a new segregation advection diffusion model has been derived based on particle scale
forces, in particular a granular buoyancy force (or segregation force) and an inter-particle drag force. This
provides new physically based parametrisations for the advection and diffusion coefficients. This new
model is analysed in the bedload configuration, and reproduces qualitatively the DEM results. To improve
the model, new dependencies on the inertial number and small particle concentration are proposed for the
segregation and drag forces.

Finally, the impact of size segregation on sediment transport is studied through the mobility of
bidisperse already segregated particle beds. Large particles are placed above small ones, and it is observed
that, in the same fluid and surface bed conditions, the transport rate is higher in the bidisperse configuration
than in the monodisperse one. For the range of studied size ratio (r < 4), it is showed that it is not
a rugosity but a granular effect. This is analyzed within the framework of the µ(I) rheology and it is
demonstrated that the buried small particles are more mobile than larger particles and play the role of a
conveyor belt for the large particles at the surface. Based on rheological arguments, a simple predictive
model for the additional transport in the bidisperse case is proposed, which reproduces quite well the
DEM results for a large range of Shields number and for size ratios smaller than 4. The results of the
model were used to identify four different transport regimes of bidisperse mixtures, depending on the
mechanisms responsible for the mobility of the small particles.

This work represents an important improvement in the understanding of size segregation during
bedload transport and questions our understanding of bidisperse granular media, which have not been
much studied. It also represents a first step in an upscaling process towards the morphological scale
through continuum models.
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Résumé

La compréhension du tri granulométrique des particules est un enjeu majeur pour l’étude des évolutions
morphologiques des rivières de montagne. La prédiction des flux de transport reste difficile avec des écarts
de plusieurs ordres de grandeurs entre les valeurs prédites et mesurées. L’une des raisons principales de
cette difficulté est la ségrégation, phénomène granulaire de tri granulométrique des particules constituant
le lit sédimentaire. La ségrégation est donc un phénomène à l’échelle du grain ayant un impact à l’échelle
morphologique.

Cette thèse présente une étude numérique de la ségrégation en tant que phénomène granulaire dans le
cas du charriage et son impact sur le transport sédimentaire. Un modèle aux éléments discrets (DEM)
couplé à un modèle fluide turbulent unidimensionnel est utilisé. A l’instant initial, des petites particules
sont déposées au dessus de particules plus grosses. Le fluide s’écoule par gravité et transporte les particules
du lit sédimentaire. Cette configuration, proche d’un lit érodable, est caractérisée dans la profondeur par
des profils exponentiellement décroissant de la vitesse particulaire, du taux de cisaillement et du nombre
inertiel et présente une phénoménologie de ségrégation particulière. Les petites particules s’infiltrent en
couche, sous forme d’onde progressive, dont la vitesse est contrôlée par le nombre inertiel en bas de la
couche. On observe aussi que la vitesse de ségrégation est dépendante de la concentration locale en petites
particules et du ratio de taille. Le problème de ségrégation est ensuite analysé à partir d’un modèle
d’advection-diffusion. Avec un coefficient d’advection proportionnel au nombre inertiel, le modèle continu
reproduit parfaitement la dynamique de la phase des petites particules. Enfin on démontre que pour
reproduire l’onde progressive observée dans les simulations DEM, le coefficient de diffusion doit avoir la
même dépendance avec le nombre inertiel que le coefficient d’advection.

Très récemment, un nouveau modèle d’advection-diffusion a été proposé dans la littérature à partir
de forces inter-particulaires, notamment une force de portance (ou force de ségrégation) et de traînée,
apportant de nouvelles paramétrisations physiques aux coefficients d’advection et de diffusion. Ce nouveau
modèle est analysé ici dans la configuration du charriage. La dépendance en nombre inertiel, observée
dans les résultats DEM, peut être retrouvée à partir de ces nouvelles paramétrisations. Pour reproduire
quantitativement les simulations DEM, de nouvelles dépendances en nombre inertiel et concentration en
petites particules sont proposées pour la force de ségrégation et le coefficient de traînée.

Enfin, l’impact de la ségrégation sur le transport sédimentaire est étudié en s’intéressant à la mobilité
d’un lit bi-disperse déjà ségrégé. Les grosses particules sont placées au dessus des petites et on observe que,
pour la même contrainte fluide et pour le même état granulaire de surface, le transport est plus élevé dans
le cas bi-disperse que dans le cas mono-disperse. Pour la gamme de ratio de taille étudié (r < 4), on montre
que l’augmentation de mobilité n’est pas un effet de rugosité mais un effet rhéologique. À partir d’une
analyse dans le cadre de la rhéologie µ(I), il est démontré que les petites particules en profondeur sont plus
mobiles que les grosses particules, jouant le rôle d’un tapis roulant pour les grosses particules de surface
et augmentant ainsi la mobilité globale du lit sédimentaire. Basé sur des arguments rhéologiques, un
modèle simple de prédiction de l’augmentation du flux sédimentaire est proposé, reproduisant correctement
les résultats DEM pour une large gamme de nombre de Shields et pour des ratio de taille inférieurs à
4. Les résultats du modèle sont exploités pour identifier quatre régimes de transport différent selon les
mécanismes responsables de la mobilité des petites particules.

Ce travail représente une avancée importante dans la compréhension de la ségrégation en transport
sédimentaire par charriage et questionne notre compréhension des milieux granulaires bi-disperses encore
peu étudiés. Il représente aussi une première étape dans le processus de changement d’échelle vers l’échelle
morphologique par le biais de modèles continus.
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Chapter 1

Introduction

Everyone has been through this awkward moment when, at the end of a box of muesli,
only crumbs remain to be eaten, while we could enjoy nice large pieces at the beginning
of the box. This phenomenon of particle sorting by size has been called size segregation.
The literature also refers to it as the Brazil-nut effect because it was discovered when
transporting Brazil nuts by truck on bumpy roads. When delivered, the Brazil nuts were
found sorted by size due to the induced vibrations.

Size segregation has huge implications for industrial applications, in which a perfect
mixture is often desired. For instance, size segregation can alter the resistance properties
of concrete due to the migration of aggregates (ACI committee 238, 2008; Navarrete and
Lopez, 2017) (see figure 1.1a). For the pharmaceutical industry, the non-uniformity of
powder mixtures due to segregation can lead to non acceptable quality of tablets and
capsules (Carson, 1988). Segregation can also be a useful tool to ensure the selection of a
particular class of grains. As an example, just after harvest and before the transfer into
barrels, grapes pass through a vibrating sorting table (see figure 1.1b) allowing the removal
of small debris such as small leaves, overly-mature fruits or insects. Size segregation is also
a main feature of geophysical flows such as debris flows, pyroclastic flows, snow avalanches
and sediment transport. During these granular flows, the larger elements rise to the surface
and often collect at the front. Even astrophysical applications are concerned by segregation.
A recent study (Perera et al., 2016) has shown that size segregation could explain the
presence of large blocks at the surface of asteroids as illustrated in figure 1.1c.

Beyond size segregation, sorting of particles occurs as soon as there exist property
differences, such as density (Shi et al., 2007; Tripathi and Khakhar, 2011a), shape (Pollard
and Henein, 1989) or friction (Srebro and Levine, 2003; Ulrich et al., 2007). However size
segregation is certainly the most studied and efficient segregation phenomenon.

Plenty of mechanisms are responsible for size segregation with a huge phenomenology
depending on the geometry of the system, the size ratio between large and small particles
or the granular flow regime (Thomas, 2000). For large size ratios, the small particles
can percolate spontaneously by gravity, without external forcing, into the bed of larger
particles (Bridgwater and Ingram, 1971; Dudill et al., 2017). For the smaller size ratios,
typically below six, spontaneous percolation is not possible without deformation of the
granular bed, which can be achieved by shearing or vibrating. This dynamic segregation
results from the combination of kinetic sieving (Middleton, 1970) and squeeze expulsion
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(a) (b) (c)

Figure 1.1: (a): Manisfestation of segregation of coarse aggregates in a concrete pillar
(adapted from Guo et al. (2020)). (b): Vibrating sorting table to separate fruit from non
desired small particles. Top: a sieve allows the automatic elimination of small particles.
Down: the larger elements (bunches, leaves) are removed by hand (vineyard 2020 at Mas
des Auribelles, personal pictures). (c): Itokawa asteroid which surface is composed of large
boulders (credit: JAXA).

(Savage and Lun, 1988). When sheared, the granular material dilates and creates gaps,
as the layers of particles flow past one another. Kinetic sieving is based on the idea that,
under the action of gravity, small particles are more likely to fall down into the created
gaps than the large particles, because they are more likely to fit into the available space.
This process competes against squeeze expulsion, which tends to push all particles upwards
with the same probability. The combination of both processes, which for brevity will just
be called gravity driven segregation (Gray, 2018), results in a net downward flux of small
particles and an upward flux of large grains, leading to an inversely graded bed. This PhD
thesis focuses on gravity driven segregation in the context of bedload transport.

1.1 Context
Sediment transport is of major importance to understand the geomorphological evolution of
rivers, their management and their interactions with human infrastructures such as dams,
bridges or cities. During floods, huge amounts of sediments can be transported leading
to natural hazards as illustrated in figure 1.2. One of the main challenges is therefore to
be able to predict the amount of transported sediments and the associated morphodynamics.

In river streams, the transport of sediment can be decomposed into two modes of
transport, suspended load and bedload. Suspended load is the transport of the smallest
sediments, from sand to clay, directly suspended in the water column under the effect of

Rémi Chassagne 2



1.1. Context

(a) (b)

Figure 1.2: (a) Deposited sediment after the 2005 flood of the Domenon river in Domène
(France). (b) Destroyed shop by the sediment transported by the Saltine river in Brigue
(Switzerland). Credits for the pictures: P. Belleudy and R. Loat

flow turbulence. Bedload is the transport of larger sediment particles, from sand to gravels,
by rolling, sliding and saltating on top of the mobile sediment bed. While suspended load
is often larger in mass, bedload transport represents the main contribution to riverbed
evolution. In gravel bed rivers, it may even represent the main contribution of the total
solid transport rate (Turowski et al., 2010). The present PhD thesis focuses on the bedload
transport regime.

The morphological evolution of river beds depends on the erosion and deposition budget
and is therefore related to transport, which is the key parameter to predict. In order to
establish bedload transport laws, one classically tries to relate the dimensionless transport
rate, or Einstein parameter (Einstein, 1942), defined as

Q∗s = Qs

((ρp/ρf − 1)gd3)1/2 , (1.1)

to the dimensionless fluid bed shear stress, or Shields number (Shields, 1936), defined as

θ = τ fb
(ρp − ρf )gd, (1.2)

where Qs is the transport rate per unit width, ρp (resp. ρf) is the particle density (resp.
fluid density), g is the acceleration of gravity, d is the bed surface characteristic particle
diameter and τ fb is the fluid bed shear stress. The relation between the Einstein parameter
and the Shields number has been studied extensively both experimentally (Gilbert, 1914;
Meyer-Peter and Müller, 1948; Rickenmann, 1991; Recking et al., 2009; Lajeunesse et al.,
2010) and theoretically, through mechanical (du Boys, 1879; Kalinske, 1947; Bagnold,
1956; Charru et al., 2004) and statistical approaches (Einstein, 1942; Fernandez-Luque
and Van Beek, 1976; Parker et al., 2000; Ancey et al., 2008; Furbish et al., 2012). This
has led to the formulation of many transport laws, the most common of which is certainly
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Figure 1.3: Compilation of 8700 field data in more than 100 rivers and 1317 flume data.
The Meyer-Peter and Müller (1948) formula (MPM) is also plotted for comparison.

the Meyer-Peter and Müller (1948) formula

Q∗s = 8 (θ − θc)3/2 , (1.3)

where θc is the critical Shields number, which corresponds to a threshold value below which
sediments are in principle not transported. Most transport laws have the same formulation
as equation (1.3) but with a different prefactor or power-law exponent. However, despite
more than a century of research, bedload transport formulae still fail to predict accurately
the measured transport rate. Figure 1.3, adapted from Recking et al. (2013), shows a
compilation of flume and field data together with the Meyer-Peter and Müller (1948)
formula. This formula has the right trend but can differ up to six orders of magnitude
with the measured data, in particular close to the threshold of motion. Defining a critical
Shields number from the data is not obvious at all and the large dispersion of the data
indicates that the Einstein and Shields numbers are not the only relevant parameters to
describe bedload. It seems therefore that some transport mechanisms are missing in the
classical description of bedload.

Among the numerous possible missing mechanisms, it has recently been pointed out in
the literature three main challenges for bedload transport that need to be addressed. First,
Whitaker and Potts (2007) and Dhont and Ancey (2018) have evidenced the intermittent
nature of bedload transport, with space and time variations of the data up to one order of
magnitude for the same fluid forcing. Understanding these fluctuations in transport would
improve our capacity to predict the morphological evolution of gravel bed rivers.

Second, the definition of the critical Shields number is very difficult and lead to several
consistency problems (Pähtz et al., 2020). Close to the threshold of motion, the initiation
of motion is strongly related to fluid velocity fluctuations, which can be strong enough
to transport particles while the mean flow is too weak. It is therefore difficult to clearly
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separate flow with and without transport. In addition, the incipient threshold of motion
(by accelerating slowly the fluid) is not the same than the cessation threshold of motion
(by decelerating the fluid). This hysteresis effect is classically attributed to particle inertia
but a recent study suggests that it could also be due to inter-particle friction (Perrin et al.,
2019). Finally, even for Shields numbers close to zero, some authors have been able to
measure a very slow granular flow (Paintal, 1971; Houssais et al., 2015). These flows, also
called creeping flows, have led some authors to question the existence of a critical shear
stress (Lavelle and Mofjeld, 1987). In addition to these consistency problems, the critical
Shields number is also expected to depend on the particle diameter, inertia, shape, friction,
cohesion. . . All these complexities are well illustrated in figure 1.3 with large dispersion of
data at low Shields numbers.

Another reason for our inability to predict accurately the transport rate is the poly-
dispersity of the grain size distribution (Bathurst, 2007; Ancey, 2020), the focus of this
PhD work. The mobility of the sediment bed is actually highly influenced by its size
distribution. This has been mainly investigated from hydrodynamics perspectives. Indeed,
for a given fluid forcing, the ratio between the fluid drag contribution and the buoyant
weight of the particle is inversely proportional to the diameter, so that small particles
are more transported than larger ones. In addition to this size-controlled effect, the
presence of grains of different sizes alters the sediment exposition to the fluid flow and
thereore modifies the bed mobility. In 1914, Gilbert (1914) was one of the first to observe
experimentally that the introduction of finer sediments led to an increase of sediment
mobility. This has then been studied extensively due to strong implications on fluvial
morphology (Wilcock, 1993; Houssais and Lajeunesse, 2012; Dudill et al., 2017, 2018). It
is generally observed that, in polydisperse beds, the mobility of smaller grains is decreased
while that of larger grains is increased (Wilcock, 1993; Parker et al., 1982; Houssais and
Lajeunesse, 2012). For instance small grains can be protected from the water flow by
larger grains (see figure 1.4) reducing their mobility. In transport laws, the simplest way
to deal with polydispersity is to define a characteristic surface sediment diameter based on
the grain size distribution, classically d50, the median surface diameter, or d84 (84% of the
sediment is smaller than d84) (Recking, 2013). This approach considers that the sediment
bed behaves like an equivalent monodisperse bed of modified diameter but it does not take
into account size interactions between grains, nor possible differences in the grain mobility
due to their size. A more complex approach consists in modelling the transport of each
class separately and to introduce empirical hiding functions in transport laws (Egiazaroff,
1965; Parker et al., 1982; Powell et al., 2001; Wilcock and Crowe, 2003; Houssais and
Lajeunesse, 2012). These hiding functions allow the modification of transport law coef-
ficients and critical Shields numbers of each class in order to account for relative size effects.

In addition to these hydrodynamic considerations, the complex relations between
grains of different sizes can be the result of granular interactions and in particular of size
segregation. Indeed, Frey and Church (2011) and Ferdowsi et al. (2017) have shown that
the formation of armoured layers (see figure 1.4) is also a granular phenomenon, with
large gravels rising up to the surface and smaller grains infiltrating the bed. It seems
therefore necessary to adopt a complementary granular approach to study the mechanisms
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(a) (b)

Figure 1.4: Field manifestation of size segregation. (a) Top view of Archiane stream
(France). After removing the first large rocks of the surface armoured layer, smaller rocks
are found protected below (personal picture). (b) Vertical profile in a gravel river bar in
Vedder River, British Columbia, (Canada) (adapted from Frey and Church (2009))

controlling and responsible for size segregation in bedload transport and their consequences
on the mobility of bidisperse beds.

The granular communities have already started to investigate the granular mobility
question. In particular, due to strong implications for industrial applications and most
geophysical flows (debris flows, pyroclastic flows or snow avalanches), they studied the
influence of the slope (Mangeney et al., 2010; Farin et al., 2014; Maurin et al., 2018),
basal friction (Chedeville and Roche, 2014; Edwards et al., 2017), total volume (Staron
and Lajeunesse, 2009) and polydispersity (Phillips et al., 2006; Linares-Guerrero et al.,
2007; Iverson et al., 2010; Lai et al., 2017) on particle mobility. Concerning the effect of
polydispersity, Linares-Guerrero et al. (2007) measured, with two dimensional Discrete
Element Method (DEM) simulations, the run-out distance of dry bidisperse granular
avalanches. They observed an increased mobility of the avalanche due to the presence of
small particles segregating at the base of the granular flow and acting as a lubrication
layer. Similarly, Lai et al. (2017) with DEM and laboratory experiments of granular
collapse with fractal size distributions, observed the formation of a basal small particle
layer increasing the total mobility. In bedload transport, vertical size segregation is often
identified as a main mechanism responsible for the increased mobility of polydisperse beds.
In laboratory experiments with natural materials, Recking et al. (2009) and Bacchi et al.
(2014) showed that, under certain conditions, due to kinetic sieving, small particles smooth
the bed subsurface and make the above large particles more mobile. In bedload transport
laboratory experiments with a bidisperse bed, Dudill et al. (2018) observed that the
finer particles, after having infiltrated the first uppermost layers, increased drastically the
sediment mobility. It seems therefore that size segregation, and in particular the formation
of a small particle layer below large ones, plays an important role in the increased mobility
process. Despite the few studies presented above, there is still no clear understanding of
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the physical mechanisms responsible for the increased mobility of polydisperse mixtures.

The classical hydrodynamic approach of polydispersity in bedload transport only takes
into account the surface state of the bed. The literature above however shows that the
depth structure of the bed also impacts the sediment mobility. This opens two main
questions. First, how is built this vertical structure ? Or in other words, what are the
mechanims at the origin and controlling size segregation during bedload transport ? And
secondly, how does it affect the sediment mobility and what are the associated granular
mechanisms ? This PhD study tries to answer these two questions.

In order to address this sediment mobility problem, the analysis given above shows the
necessity to adopt a complementary granular point of view (Frey and Church, 2009, 2011)
and to understand size segregation mechanisms. This would benefit both the granular
and geomorphological communities. In the following sections, a literature review on size
segregation and its modelling is presented and commented in the perspective of bedload
transport.

1.2 Size segregation in granular media

Particle-size segregation has strong implications for the study of both geomorphology and
granular media in general. Gravity driven segregation has been studied experimentally
and numerically in multiple configurations such as dry granular avalanches (Savage and
Lun, 1988; Dolgunin and Ukolov, 1995; Wiederseiner et al., 2011; Fan et al., 2014; Jones
et al., 2018), shear cells (Golick and Daniels, 2009; May et al., 2010; Van der Vaart et al.,
2015; Fan and Hill, 2015; Fry et al., 2018), annular rotating drums (Gray and Ancey, 2011)
and bedload configurations (Ferdowsi et al., 2017; Lafaye de Micheaux et al., 2018; Frey
et al., 2020). However no general satisfying description has been proposed yet.

In order to identify the mechanisms and comment on the literature on gravity driven
segregation, a dimensional analysis is performed. This analysis is made in the dry limit
case, consistent with the results of Maurin et al. (2016) showing that the fluid (here
water) just acts as a forcing mechanism in turbulent bedload transport and has only
secondary effects on the granular behaviour. Therefore, the fluid is not considered as an
influencing parameter for this granular segregation configuration. The different variables
of the problem are

ds, dl, ρp, g, φs, γ̇p, P p, ws, (1.4)

where ds (resp. dl) is the diameter of small (resp. large) particles, φs is the local
concentration of small particles, ρp is the particle density, g = 9.81 m.s-2 is the gravitational
acceleration, γ̇p is the particle shear rate, P p is the granular pressure and ws is the
segregation velocity of the small particles. These eight variables involve only three units
(length, time and mass), so the problem depends on five dimensionless groups. Choosing
dl,

√
dl/g and ρpd3

l as reference length, time and mass units respectively, the following
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relation is obtained
ws√
gdl

= G
(
r, φs,

√
dl
g
γ̇p,

P p

ρpdlg

)
, (1.5)

where r = dl/ds is the size ratio between large and small particles and G is an unknown
function. It is assumed that relation (1.5) can be written in a power law form for the
dimensionless shear rate and pressure and that the effects of each variables are decoupled,

ws√
gdl
∝
(√

dl
g
γ̇p
)ζ (

P p

ρpdlg

)η
G1(r)G2(φs), (1.6)

where the function G1 should vanish when r = 1 in order to cancel segregation in the
monodisperse limit.

In the theory of Savage and Lun (1988), the shear rate γ̇p is predicted to be an
important controlling parameter for the rate of particle-size segregation. This is based on
the observation that as particles flow downslope, shearing allows each layer of particles in
the flow to move faster than the one beneath and hence the rate of finding gaps to fall into
is expected to be proportional to the shear rate. Savage and Lun (1988) showed that this
assumption produced good agreement between the theory and bidisperse experimental
flows down inclined planes. More recently, DEM simulations of dry bidisperse mixtures
in heap flows (Fan et al., 2014) have also found a linear relation between the segregation
velocity and the shear rate. However, the annular shear cell experiments of Golick and
Daniels (2009) suggest that the segregation-rate is also pressure dependent, since the
segregation rate dramatically decreased when a large pressure was applied on the top
plate of their shear cell. This pressure dependence has also been observed in the DEM
simulations of Fry et al. (2018), who found a power law relating the segregation velocity
to the inertial number I (GDR MiDi, 2004). A scaling with the inertial number represents
an extension of the Savage and Lun (1988) theory in order to take into account both the
effect of the shear rate and pressure on segregation. It corresponds in equation (1.6) to
η = −ζ/2, which can be rewritten as

ws√
gdl
∝ IζG1(r)G2(φs), (1.7)

with I the inertial number based on the large particle diameter defined as

I = dlγ̇
p√

P p/ρp
, (1.8)

suggesting that the segregation velocity is a function of the inertial number, the size ratio
and the local concentration.

The size ratio between large and small particles r is also a key parameter for size
segregation. In the annular shear cell, Golick and Daniels (2009) showed that the segregation
velocity is an increasing function of the size ratio with a maximum around r = 2. This
effect was also observed in both two-dimensional (2D) and three-dimensional (3D) DEM
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simulations of sheared granular flows (Guillard et al., 2016; Thornton et al., 2012).

The effect of the small particle concentration φs has also been widely studied, and
different forms for G2 have been proposed (Bridgwater et al., 1985; Savage and Lun, 1988;
Dolgunin and Ukolov, 1995; Gray and Thornton, 2005; May et al., 2010; Gajjar and Gray,
2014; Van der Vaart et al., 2015; Fan et al., 2014). The small particles have been shown to
segregate less easily if they are more concentrated and the downward velocity should vanish
for a pure phase of small particles. For this purpose, the simplest form G2(φs) = 1−φs, has
been proposed by Dolgunin and Ukolov (1995). In oscillating shear cell experiments, Van
der Vaart et al. (2015) measured the time necessary to achieve complete segregation with
an initial mixture ranging from one small particle segregating into a bed of large particles,
to a single large particle rising up through a small particle bed. They observed that both
extreme cases were not symmetric, resulting in an asymmetry of the vertical velocity with
the concentration, and Gajjar and Gray (2014) proposed a quadratic dependence of G2
on φs. Fan et al. (2014) and Jones et al. (2018) also observed this non-linearity in dry
bidisperse avalanche simulations, but concluded that the form of Dolgunin and Ukolov
(1995) is still a good first order approximation.

This literature review on dry granular flows underlines the qualitative understanding of
size-segregation for simple flow configurations. Bedload transport can be seen as a granular
flow, where the fluid forcing induces strong velocity gradients in the vertical direction and
a somewhat more complex granular forcing, which could challenge the classical picture of
segregation. Few studies have been published on gravity driven segregation in bedload
transport and more remains to be done for a clear understanding of the processes at play.
Ferdowsi et al. (2017) experimentally studied size segregation in laminar bedload transport
and performed dry granular flow simulations. They studied the formation of armour,
i.e. the segregation of large particles to the top, starting from a mixture of small and
large particles. They showed that the process seems to be a granular phenomenon and
reproduced their experimental results in the framework of continuum segregation modelling,
using a generalization of the Gray and Thornton (2005) segregation model. Hergault et al.
(2010) and Frey et al. (2020) studied experimentally size-segregation in turbulent bedload
transport, considering a quasi-2D channel enabling particle tracking. They found that the
particles move down as a layer into the bed, and related the segregation velocity to the
granular shear rate.

While the literature review presented above underlines the progress in the understanding
and modelling of gravity driven segregation, more physically-based parameterizations for
a continuum segregation model are still lacking, in particular in the complex turbulent
bedload transport configuration. In addition, no general description of size segregation,
that would be valid in all configurations, has been proposed yet. From a geomorphological
point of view, the impact of size segregation on transport rate is not well understood and
an effort is still needed in the development of models able to represent size segregation at
the river scale.
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1.3 Size segregation modelling

Modelling size segregation is considered as one of the main challenges for bedload transport
(Ancey, 2020) and for the understanding of granular flows in general (Andreotti et al.,
2013). This is however quite a recent subject of research. So far, segregation has been
mainly investigated on the one hand at the particle scale, trying to model the forces applied
on a single intruder. On the other hand, continuum models describing size segregation for
an assembly of particles of different sizes have been proposed. The latter approach has
been succesfully used to represent size segregation experiments and will be applied in the
bedload configuration in this PhD work. Existing continuum models however still lack
strong physical fondations that would rely on the particle scale forces applied on an intruder
and would bring information on the physical mechanisms at play during size segregation.
This section therefore reviews and comments on these two different approaches.

1.3.1 Particle scale modelling

At the particle scale, one generally considers the evolution of one or several intruders in
a bath of other homogeneous particles. The intruder can have a different shape, size or
density than other particles and segregation is analysed in terms of force. The migration
of the intruder is seen as the result of a destabilizing lift force (Ding et al., 2011), or
segregation force, together with a resistive drag force (Tripathi and Khakhar, 2011a, 2013)
due to the relative motion with surrounding particles. Among the few existing studies, the
lift force has been measured to be a buoyancy-like force (Tripathi and Khakhar, 2011a,
2013; Guillard et al., 2014, 2016), or Saffman lift force (Van der Vaart et al., 2018). Another
approach, proposed by Staron (2018), considers that the migration of the intruder is not
driven by a lift force but by force fluctuations, challenging the classical view of segregation.
In this section, the investigations of Tripathi and Khakhar (2011a) on density segregation
and Guillard et al. (2016) on size segregation are presented and interpreted in the bedload
configuration. In these papers, the authors have been able to isolate and to clearly identify
the forces during segregation.

Tripathi and Khakhar (2011a) proposed a granular Stokes experiment. They performed
DEM simulations of a settling heavy particle in a dense flow down an incline made of
light spheres but with the same particle size (see figure 1.5a). They measured the velocity
and the forces applied on the intruder and demonstrated that it was submitted to three
different forces. The first is its own weight P = −ρIV gcos(α), where ρI is the intruder
density and V is its volume. Assuming that the surrounding lighter particles can be
considered as an equivalent fluid, a buoyancy force also applies on the intruder. With an
analysis in the limit of similar particle density, they showed that it is similar to a fluid
buoyancy force as Fb = ρpV gcos(α), where ρp is the density of the surrounding particles.
Finally, by analogy with hydrodynamics, they showed that, in dense flow conditions, the
intruder is also submitted to an inter-particle drag force which follows a Stokesian form

Fd = −c(Φ)πdηp(wI − wp), (1.9)
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1.3. Size segregation modelling

where c(Φ) is the drag coefficient, d is the particle diameter, Φ is the solid volume fraction
defined as the portion of the space occupied by the solid phase, ηp = |τ pxz|/γ̇p is the granular
viscosity with τ pxz the granular shear stress, wI is the settling intruder velocity and wp is
the bulk vertical velocity. Tripathi and Khakhar (2011a) found the drag coefficient to have
a slight dependency with the solid volume fraction Φ and to be of the order of the fluid
viscous drag coefficient, c ∼ 3. Similar to a fluid drag force, the particle drag force can be
associated to a particle Stokes number

Stp = ρpdI
√
gdI

6cηp , (1.10)

which compares the inertia of the intruder with the viscosity of the surrounding particles.
With these three different forces, the force balance on the intruder can be written as

ρIV
dwI
dt

= P + Fb + Fd

= −(ρI − ρp)V g cos(α)− cπdηp(wI − wp).
(1.11)

Tripathi and Khakhar (2011a) verified this equation at steady state, i.e. with dwI/dt = 0.
The parralel with hydrodynamics is direct here. The intruder sinks if its weight is stronger
than the buoyancy force. The forcing mechanism for density segregation is therefore the
gravitational force. Note that in the limit ρI → ρp, the gravity term in the right hand
side vanishes and the equation of motion becomes a simple relaxation equation without
segregation. The difference with hydrodynamics lies in the limit of non moving particles.
Indeed, while an object can sink in a fluid at rest, the intruder can only segregate if the
surrounding particles are moving. However, defining the particle drag force for a granular
bed at rest is not trivial, as the granular viscosity becomes infinite. This case is therefore
discarded in this study.

Let us consider now an intruder of the same density but different size than surrounding
particles. According to the previous analysis, the granular buoyancy force Fb balances
exactly the weight P of the intruder and there is no destabilizing force anymore in
equation (1.11). This means that there exists another destabilizing force, that is called
segregation force in the following, responsible for the migration of an intruder of different
size. To be consistent with equation (1.11) the segregation force should vanish when the size
ratio between the intruder and surrounding particles is close to 1. In order to determine the
segregation force, Guillard et al. (2016) performed two-dimensional (2D) DEM simulations
of particle scale size segregation. They considered a 2D granular medium made of disks
of diameter ds, with an intruder of diameter dI . They measured the segregation force
when applying a gravitational field (see figure 1.5b). The mixture was confined by a plate
of glued particles and sheared. A virtual spring is attached to the intruder. While the
large intruder rises up, the spring elongates. The originality of this work is that once the
steady state is reached, the intruder does not move and the drag force vanishes. Therefore
at steady state, the particle is submitted to its own weight, to the granular buoyancy
force, to the segregation force and to the spring force and these forces equilibrate exactly.
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(a) (b)

Figure 1.5: (a) Schematic view of the density segregation system (adapted from Tripathi
and Khakhar (2011a)). A heavy intruder of mass mI surrounded by lighter spheres. (b)
Schematic view of the size segregation system (adapted from Guillard et al. (2016)). A
large intruder in a shear cell with smaller particles.

Measuring the spring force and substracting the weight of the intruder, they were able
to measure the sum of the granular buoyancy force and segregation force (they did not
distinguish these two forces in their article). They found it to be proportional to the
granular stress gradients as

Fb + Fseg = −VI
(
F(µ, r)∂P

p

∂z
+ G(µ, r)∂|τ

p
xz|
∂z

)
, (1.12)

where VI is the volume of the large intruder, F and G are two empirical functions
depending on the friction coefficient µ = |τ pxz|/P p and the size ratio r = dI/ds. In the
bedload configuration, the slope is commonly small (tan(α) < 20%). The pressure gradient
being proportional to the cosine of the slope and the shear stress gradient to the sine of
the slope, the second term of equation (1.12) can be neglected and

Fb + Fseg = −VIF(µ, r)∂P
p

∂z
. (1.13)

Assuming that the pressure is hydrostatic, ∂P p/∂z = −Φρpg cosα, and using the expression
of the granular buoyancy force introduced by Tripathi and Khakhar (2011a), the latter can
be written Fb = −VI/Φ∂P p/∂z yielding the following expression for the segregation force

Fseg = −VI
(
F(µ, r)− 1

Φ

)
∂P p

∂z
. (1.14)

Rémi Chassagne 12



1.3. Size segregation modelling

The segregation force can therefore be interpreted as a default of buoyancy. Guillard et al.
(2016) found F to depend on µ as F(µ) = 2.4 + 0.73 exp(−(µ − µc)/0.051), for µ > µc
where µc is the static friction coefficient. F also depends on the size ratio r. They observed
it to be maximum for r = 2 but did not provide any expression. As mentioned previously,
the segregation force should vanish in the same size particle limit (no destabilizing force
when there is no size difference between the intruder and surrounding particles). This
is equivalent to F(µ, r = 1) = 1/Φ, which is indeed what is observed by Guillard et al.
(2016) in their simulations.

Therefore, a segregating large particle in a small particle bed (without the spring),
and remembering that the granular buoyancy force balances the weight of the intruder
(P = −Fb), the equation of motion becomes

ρpVI
dwI
dt

= P + Fb + Fseg + Fd

= −VI
(
F(µ, r)− 1

Φ

)
∂P p

∂z
− cπdIηp(wI − wp).

(1.15)

In order to clearly identify the mechanisms responsible for density or size segregation,
the approaches of Tripathi and Khakhar (2011a) and Guillard et al. (2016) can be combined.
Considering an intruder of different size and density than surrounding particles, the equation
of motion of the intruder is

ρIVI
dwI
dt

= −(ρI − ρp)VIg cos(α)− VI
(
F(µ, r)− 1

Φ

)
∂P p

∂z
− cπdIηp(wI − wp). (1.16)

If r = 1, F(µ, r = 1) = 1/Φ, and equation (1.11) is retrieved. If ρI = ρp, equation (1.15) for
size segregation only is found. This equation highlights the different origins of segregation
in density or size. In the case of density segregation, segregation is caused by the first
term of the right hand side. The gravitational force being stronger than the buoyancy
force applied by the surrounding particles, this is a simple gravitational mechanism. In
the case of size segregation, the first term of the right hand side vanishes and segregation
is caused by the second term, corresponding to a default of buoyancy. In this equation the
particle drag force due to the surrounding small particles is equivalent to a damper. It
slows down segregation and scales with the granular viscosity and the intruder velocity.
Note that in this equation, the rise of the intruder is a function of the granular state
of the bed. The segregation force depends on the friction coefficient and on the granu-
lar pressure gradient and the resistive force on the granular viscosity and on the bed velocity.

This equation highlights the mechanisms responsible for size segregation at the particle
scale and should predict the vertical motion of a single isolated intruder in a small particle
bed. For numerous intruders, collective effects have to be taken into account and individual
motions are not sufficient anymore to describe the migration of large and small particles.
A continuum description is therefore preferable to the particle scale description.
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1.3.2 Advection-diffusion model for size segregation

Modelling the size segregation phenomenon at the particle scale is computationally de-
manding and can only be achieved for small domains. In this context, one of the main
challenges for segregation is to be able to upscale to macroscopic continuum modelling.

The classical approach is to consider each class of particles as a phase. A concentration
is attributed to each class, corresponding to the portion of the granular volume occupied
by the particles of the class. Since the first size segregation continuum model of Bridgwater
et al. (1985), there have been plenty of models for segregation, the great majority of them
in an advection or advection-diffusion form. The evolution of the small particle phase
concentration can be described by a transport equation of the following form

∂φs
∂t

+∇ · (φsu)− ∂Fs(φs)
∂z

= ∇ · (D∇φs) , (1.17)

where φs is the small particle concentration, u is the bulk velocity field, Fs is the segregation
flux and D is the diffusion coefficient. In this transport equation, small particles are
advected both by the mean flow∇·(φsu) and downward by a segregation flux −∂Fs(φs)/∂z.
A diffusion term ∇ · (D∇φs) allows particles of one class to mix with others. The large
particle concentration φl is obtained by the relation φs + φl = 1.

Models differ from each others by the way to derive and express the segregation flux Fs.
Based on their kinetic sieving theory, Savage and Lun (1988) were the first to proposed
an analytical expression of the segregation flux which depends on the granular shear
rate γ̇p and small particle concentration. Their expression however does not depend on
gravity although it is driving size segregation. More recently, Gray and Thornton (2005)
placed the problem in the mixture theory framework, and assuming ad-hoc granular
interactions between phases, they were able to derive analytically an advection equation
with a segregation flux depending on gravity. This model has then been extended to
account for the presence of passive fluid (Thornton et al., 2006), for diffusion (Gray and
Chugunov, 2006), for a third granular phase (Gray and Ancey, 2011) and for a continuous
size distribution (Marks et al., 2012). Advection-diffusion models for segregation were also
obtained based on the kinetic theory for granular gases (dilute regime) (López de Haro
et al., 1983; Jenkins and Mancini, 1989; Khakhar et al., 1999; Ottino and Khakhar, 2000;
Fan and Hill, 2015). The segregation flux is the sum of two distinct fluxes, which are
proportional to the granular temperature gradient and to the granular pressure gradient.
Similar to a real gas, the granular temperature characterises the kinetic energy of particle
random motion and is computed with velocity fluctuations. The kinetic theory predicts
that large particles migrate toward cold regions (low granular temperature) and small
particles toward warm regions (high granular temperature). While this is verified for dilute
granular flows, it fails to predict the correct segregation state in most dense flows.

To model segregation in dense bidisperse flows, the model of Gray and Thornton (2005)
and extensions have been widely used to compare with DEM simulations (Fan et al., 2014)
and laboratory experiments (May et al., 2010; Wiederseiner et al., 2011; Van der Vaart
et al., 2015; Ferdowsi et al., 2017). These models are briefly presented thereafter but the
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interested reader should refer to Gray and Thornton (2005), Thornton et al. (2006) and
Gray and Chugunov (2006) for exhaustive description. This is a two phase flow model,
each phase ν = l, s corresponding to the class of large and small particles respectively.
Mixture theory assumes that each spatial point is occupied simultaneously by both phases.
Because each phase shares space with the other, partial variables need to be defined, and
each phase must satisfy a mass and momentum equation

∂ρν
∂t

+∇ · (ρνuν) = 0, (1.18)

∂ρνuν
∂t

+∇ · (ρνuν × uν) = −∇pν + ρνg + βν , (1.19)

where ρν is the partial density of class ν, pν is its partial pressure, uν is its partial velocity,
ρνg is the gravitational force and βν is the interaction force applied by the other constituent
on class ν.

The partial variables need to be related to physical variables and to bulk quantities.
The partial density is computed accordingly to the portion of the space occupied by the
phase ρν = Φνρ

p (particles of both phases have the same density ρp) and the partial velocity
is assumed to be the same than the bulk velocity in the streamwise direction, uν = u,
but different in the vertical direction, ws 6= wl 6= w, where u = (u,w) is the bulk velocity
field. The main assumption of the Gray and Thornton (2005) model is that the particle
phases do not share equally the bulk pressure (not proportionally to the concentration),
i.e. pν = fνP

p where fν 6= φν and P p is the bulk pressure. This unequal repartition of
pressure is at the origin of size segregation in the model, small particles supporting less
pressure than they should.

The interaction force is taken as βν = P p∇fν − ρνc(uν − u). The first term has
been introduced to delete one of the cross terms in the pressure gradient (−∇pν =
−fν∇P p − P p∇fν) and ensures that segregation is driven by intrinsinc pressure gradient
fν∇P p. The second term is a linear granular drag force with a constant coefficient c
(Morland, 1992). Of course in 2005, the particle scale studies of Tripathi and Khakhar
(2011a) and Guillard et al. (2016) presented in the previous sub-section were not available
and Gray and Thornton (2005) had to assume simple interactions between phases.

Introducing the expressions of partial density, partial pressure and interaction force
in the momentum equation and assuming that the acceleration terms can be neglected,
the vertical velocity wν can be isolated. Introducing the obtained expression and partial
density in the mass conservation equation and assuming that the total volume fraction is
constant Φ = Const, the evolution of the small particle concentration is predicted by an
advection equation

∂φs
∂t

+∇ · (φsu)− ∂Fs(φs)
∂z

= 0, (1.20)

with Fs = (fs − φs)g/c cosα is the segregation flux, responsible for a vertical transport
of particles. The segregation flux is proportional to fs − φs which originates from the
partial presure expression (ps = fsP

p). If the bulk pressure were equally shared between
phases, the pressure proportion and the segregation flux would satisfy fs = φs and Fs = 0,
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meaning that small particles would just be advected by the mean flow without segregation.
The segregation flux also depends on gravity g, the drag coefficient c and the slope α.
With this equation, Gray and Thornton (2005) were the first to introduce analytically
gravity in size segregation, representing an important step for segregation modelling.

In order to compute the segregation flux, a closure for fs is still needed. Gray and
Thornton (2005) proposed the following ad-hoc closure, fs = φs −Bφs(1− φs), yielding a
non linear segregation flux Fs(φs) = −qφs(1− φs) with q = B/cg cos(α), where B is an
empirical constant which has to be adjusted on a case by case basis.

When considering bedload transport, the interstitial fluid also has to be modeled.
Thornton et al. (2006) extended the Gray and Thornton (2005) model to account for
the presence of a passive fluid. It results in the same equation as equation (1.20) with
q = B/c(ρp − ρf )/ρpgcos(α), the fluid only acting through buoyancy to reduce gravity.

This model has been very successful because of its elegant derivation and its simplicity.
It represented an important step to understand size segregation as it is based on particle
scale forces and introduced gravity in the segregation process. However the segregation
flux does not depend on bulk flow properties, while the litterature review evidenced the
role of the inertial number. Indeed, it is expected from the previous section that the
segregation velocity is in the form ws ∝ G1(r)G2(φs)Iζ . Fs being a flux of small particles, it
is related to the small particle velocity as Fs = φsws. Considering the simplest linear form
of Dolgunin and Ukolov (1995) G2 = 1− φs, one expects the segregation flux Fs = φsws to
be in the form

Fs ∝ G1(r)Iζφs(1− φs), (1.21)

This predicts a quadratic form for the segregation flux consistent with the one of Gray and
Thornton (2005), but indicates that the prefactor should depend on the size ratio and on
the inertial number while it was proposed constant by Gray and Thornton (2005). This
absence of dependencies may come from the simplicity of the closures proposed by Gray
and Thornton (2005), in particular the linear drag force and the expression of the partial
pressure. A way to improve the model would be to integrate the segregation force of
Guillard et al. (2016) and the more complex granular drag force of Tripathi and Khakhar
(2011a) in the phase interaction term βν . Indeed both of these forces depend on the bulk
flow properties via the friction coefficient and the granular viscosity.

The segregation model (1.20) is an advection equation with a non linear segregation
flux Fs ∝ φs(1− φs). Such hyperbolic equations lead to shock formation and propagation
of φs, that are not observed in practice. This is due to diffusive remixing effects which
somewhat act in opposition to segregation to mix the phase of small and large particles.
Gray and Chugunov (2006) introduced diffusive remixing in the Gray and Thornton (2005)
model as a simple diffusion process, resulting in the following advection-diffusion model

∂φs
∂t

+∇ · (φsu)− ∂Fs
∂z

= ∇ · (D∇φs) , (1.22)

where D is the diffusive remixing coefficient of the phase of small particles into the phase
of large ones. In granular flows, diffusion has been mainly studied in the case of self-
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diffusion, for which the diffusion coefficient is measured to be proportional to the shear
rate (Campbell, 1997; Utter and Behringer, 2004). The diffusion mechanism considered in
equation (1.22) is the mixing of one class of particles into another. This kind of diffusion is
expected to be related to self-diffusion but this has been barely studied (Cai et al., 2019).

The advection-diffusion model has shown its ability to reproduce experimental measure-
ments and numerical simulations of size segregation in different configurations (May et al.,
2010; Wiederseiner et al., 2011; Fan et al., 2014; Van der Vaart et al., 2015; Ferdowsi et al.,
2017). As already mentioned, the expressions of the segregation flux and of the diffusion
coefficient however rely on empirical closures with coefficients that need to be adjusted
case by case. A more general description of size segregation with the advection-diffusion
model, that would be valid in all configurations, is therefore needed.

1.4 Objectives and scope
This PhD thesis is at the starting point of a long and challenging upscaling process: taking
into account size segregation in the prediction of sediment transport, understanding and
modelling the impact of size segregation on geomorphological evolutions. Following and
taking inspiration from the previous works performed at INRAE (formerly Irstea and
Cemagref) by Hergault (2011), Maurin (2015), Dudill (2016) and Lafaye de Micheaux et al.
(2018), the present study focuses on the small scales, as pictured in figure 1.6, keeping in
mind that the final objective is to upscale toward the river scale. The primary purpose of
this PhD thesis is to study, at the particle scale, size segregation during bedload transport
with DEM simulations, in order to understand the mechanisms controlling size segregation
and its impact on sediment transport. A second objective is to propose a first step toward
continuum modelling at larger scales.

Figure 1.6: The time (T) and space (L) scales of the segregation problem in bedload
transport. This PhD thesis focuses on the smaller scales as identified by the red square.
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The coupled fluid DEM model developed by Maurin et al. (2015) has been adapted to
bidisperse configurations and is presented in chapter 2. Based on the dimensional analysis
performed in the present introduction, the DEM model is used in chapter 3 to study
the mechanisms controlling size segregation during bedload transport and to improve
continuum modelling of size segregation with the advection diffusion model. Starting
from the particle scale forces presented in section 1.3.1, a new physically-based advection-
diffusion model for size segregation has been derived by Hugo Rousseau, current PhD
student at INRAE. In chapter 4, this model is numerically solved and interpreted in the
light of the obtained results with the DEM simulations. Enhanced sediment mobility, as a
consequence of size segregation, is studied in chapter 5 with DEM simulations of already
segregated bidisperse beds. Last, conclusions and perspectives are proposed in chapter 6.
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Chapter 2

Presentation of the discrete model,
continuous framework and bedload
transport configuration

This chapter first presents the coupled fluid-DEM model used in this PhD thesis to study
size-segregation. Then, using a monodisperse simulation, the bedload configuration is
presented and analysed in a continuous two-phase (Eulerian-Eulerian) framework. These
descriptions will be used as a basis for the developments all along this PhD thesis.

2.1 A Coupled fluid-DEM model
The numerical model used to simulate size-segregation in turbulent bedload transport is a
three-dimensional Discrete Element Method (DEM) using the open-source code YADE
(Smilauer et al., 2015) coupled with a one-dimensional turbulent fluid model. This coupling
has been developed during the PhD of Maurin (2015) and validated with monodisperse
particle-scale experiments (Frey, 2014) in Maurin et al. (2015). It was used to study
bedload rheology (Maurin et al., 2016) and the slope influence (Maurin et al., 2018) in
monodisperse configurations. It has been extended to bidisperse configurations in this
PhD work. A summary of the model formulation is first presented for monodisperse beds.
Then, the extension to bidisperse configurations is presented.

2.1.1 Granular phase
DEM is a Lagrangian method based on the resolution of contacts between particles. For
each spherical particle p, the motion of the particle is obtained from Newton’s second law,
solving the translational and rotational momentum conservation equations

mpd
2xp

dt2
= f pg + f pc + f pf , (2.1)

Ipdω
p

dt
= T = xc × f pc , (2.2)
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Figure 2.1: The spring-dashpot sytem modelling the inter-particles contact forces.

where mp, xp, ωp and Ip are respectively the mass, position, angular velocity and moment
of inertia of particle p. The three major forces are: f pg the gravitational force, f pc the
inter-particle contact forces and f pf the interaction forces with the fluid. The inter-particle
contact forces are schematically presented in figure 2.1. They are classically defined as a
spring-dashpot system (Schwager and Poschel, 2007) composed of a spring of stiffness kn
in parallel with a viscous damper of coefficient cn in the normal direction; and a spring
of stiffness ks associated with a slider of friction coefficient µp in the tangential direction.
The normal and tangential contact forces read accordingly

Fn = −knδn − cnδ̇n,
Ft = −min(ksδt, µpFn), (2.3)

where δn (resp. δt) is the overlap between particles in the normal (resp. tangential)
direction. For each class of particles, the values of kn and ks, taken equal, are computed
in order to stay in the rigid limit of grains (Roux and Combe, 2002; Maurin et al., 2015)
by imposing

kn
max(P p)dp > 104, (2.4)

where dp denotes the diameter of particle p and max(P p)dp is the maximal pressure that
a grain can encounter. It is determined assuming a hydrostatic granular pressure. This
ensures a weak enough interpenetration of particles so that the results are independent of
the stiffness. The normal stiffness, in parallel with the viscous damper, defines a restitution
coefficient representative of the loss of energy during collisions. Based on measurements in
an experimental channel (Bigillon, 2001), it is fixed herein to en = 0.5 for each contact.
Finally, considering glass beads, the friction coefficient is fixed to µp = 0.4, corresponding
to the friction coefficient of dry glass beads. Maurin (2015) performed a sensitivity analysis
on en and µp and showed that results are negligibly affected by the value of these coefficients
as long as they remain in realistic ranges en ∈ [0.25, 0.75] and µp ∈ [0.2, 0.8].

The third type of forces concerns the interactions with the fluid. As the fluid flows with
respect to particles, this induces several forces such as drag force, buoyancy force, Magnus
force, shear induced lift force, added mass force or even Basset history force (Guyon et al.,
2001; Guazzelli and Morris, 2011). With experimental measurements of the forces applied
on a fixed particle over a rough bed and immersed in a free surface flow, Schmeeckle
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Figure 2.2: Adapted from Maurin (2015). Sketch of the problem with axes and variables
used in the model: the free surface position Hf , the water depth hw, the gravity vector ~g,
the averaged fluid and solid velocity profile 〈ux〉f and 〈vpx〉

s and volume fraction profiles Φ.
Periodic boundary conditions (BC) are used in the streamwise and spanwise direction for
the solid phase.

et al. (2007) showed that the main fluid forces acting on a particle in sediment transport
are the lift force, the drag force and the buoyancy force. They showed that the classical
formulation of the lift force proposed by Wiberg and Smith (1985) is not valid close to
the threshold of motion and, based on the absence of an alternative formulation, Maurin
et al. (2015) decided not to include the lift force in the model. The fluid interaction forces
are therefore restricted in this model to the buoyancy force and the drag force. They are
defined as

f pb = −πd
p3

6 ∇P
f
xp , (2.5)

f pD = 1
2ρf

πdp2

4 CD|| 〈u〉fxp − v
p||
(
〈u〉fxp − v

p
)
, (2.6)

where 〈u〉fxp is the mean fluid velocity at the position of particle p, P f
xp is the hydrostatic

fluid pressure at the position of particle p and vp is the velocity of particle p. The drag
coefficient proposed by Dalla Valle (1943) with a hindrance effect correction (Richardson
and Zaki, 1954) is considered

CD = (0.4 + 24.4/Rep)(1− Φ)−ζ , (2.7)

with Rep = || 〈u〉fxp − vp||dp/νf the particle Reynolds number, νf the pure fluid viscosity
and Φ the solid phase volume fraction. The (1− Φ)−ζ term takes into account hindrance
effects due to the collective presence of particles and the exponent is fixed to ζ = 3.1
(Jenkins and Hanes, 1998).
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2.1.2 Fluid phase
In order to model the bedload configuration, the DEM is coupled with a fluid model. The
problem is sketched in figure 2.2. Water flows around and above particles. In order to
gain computational time, and because the aim of the model is to focus on the granular
processes, it has been decided to use a horizontal averaged fluid model. It is based on
the three-dimensional (3D) spatially averaged two-phase momentum equations of Jackson
(2000), modelling the average motion of both the fluid and granular phases. Based on an
averaging procedure that is described below, Jackson (2000) showed that the momentum
equations of the granular and fluid phases are

ρpΦ
(
∂ 〈vpi 〉

s

∂t
+ 〈vpi 〉

s ∂ 〈vpi 〉
s

∂xj

)
= ρpΦgi +

∂σpij
∂xj

+ n
〈
fpfi

〉s
, (2.8)

ρf (1− Φ)
(
∂ 〈ui〉f

∂t
+ 〈ui〉f

∂ 〈ui〉f

∂xj

)
=−

∂
(
(1− Φ)P f

)
∂xi

+ ∂Sij
∂xj

+ ∂Rij

∂xj

+ ρf (1− Φ)gi − n
〈
fpfi

〉s
,

(2.9)

where 〈.〉s (resp. 〈.〉f ) denotes for the solid phase average (resp. the fluid phase average),
ρf is the density of the fluid, 〈vpi 〉

s (resp. 〈ui〉f) is the ith component of the averaged
particle velocity (resp. averaged fluid velocity). σpij, Sij and Rij are the ij components of
respectively the granular stress, the fluid effective viscous shear stress and the Reynolds
shear stress. Finaly n

〈
fpfi

〉s
represents the ith component of momentum transfer associated

with the interaction forces between fluid and particles.
In the present model, the granular phase is solved with the DEM. Only the fluid phase

is solved as a continuum phase with equation 2.9. At transport steady state, the total
granular phase (of small and large particles) has only a streamwise component with no
main transversal or vertical motion. In such a case, it can be shown (Revil-Baudard
and Chauchat, 2013; Chauchat, 2018) that the 3D volume-averaged equation on the fluid
velocity reduces to a one-dimensional (1D) vertical equation, in which the fluid velocity
is only a function of the wall-normal component, z, and is aligned with the streamwise
direction (see figure 2.2). The projection along z of the fluid momentum equation provides
that the fluid pressure P f is in this case given by the hydrostatic fluid pressure. The fluid
model is therefore a one-dimensional turbulent model in the streamwise x-direction with
variables only depending on z. The projection along x of the volume-averaged momentum
balance for the fluid phase (equation 2.9) simplifies to

ρf (1− Φ)∂ 〈ux〉
f

∂t
= ∂Sxz

∂z
+ ∂Rxz

∂z
+ ρf (1− Φ)gx − n

〈
fpfx

〉s
, (2.10)

This equation is close to a classical 1D turbulent fluid equation but accounts for the
presence of particles via the solid volume fraction Φ and the momentum transfer term. In
addition, the choice of closures for the viscous shear stress and turbulent shear stress is
also done according to the presence of particles.
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The fluid (water) being considered Newtonian, the viscous shear stress Sxz is classicaly
taken as

Sxz = ρf (1− Φ)νe∂ 〈ux〉
f

∂z
, (2.11)

with νe the Einstein’s effective viscosity defined as (Einstein, 1906) νe = νf(1 + 5/2Φ).
Jackson (1997) demonstrated analytically that this modification of viscosity originates
from second order particle fluid phase interactions.

The Reynolds shear stress Rxz is a turbulent fluid stress induced by fluid velocity
fluctuations. This stress has to be modelled and a closure based on an eddy viscosity
concept is adopted,

Rxz = ρf (1− Φ)νt
∂ 〈ux〉f

∂z
. (2.12)

The turbulent viscosity νt follows a mixing length approach that depends on the integral of
the solid volume fraction profile to account for the presence of particles (Li and Sawamoto,
1995),

νt = l2m|
∂ 〈ux〉f

∂z
|, lm(z) = κ

∫ z

0

Φmax − Φ(ζ)
Φmax

dζ, (2.13)

with κ = 0.41 the Von-Karman constant and Φmax = 0.61 the maximal packing of the
granular medium (random close packing). This simple formulation of mixing length extends
the Prandtl (1926) law for flow inside and over a mobile sediment bed. In the pure fluid
phase above the sediment bed Φ = 0 and the linear mixing length of Prandtl (1926) is
recovered. Inside the bed, where Φ = Φmax, the mixing length goes to zero, and the
turbulence is damped inside the dense sediment bed.

The total momentum n
〈
fpfx

〉s
transmitted by the fluid to the particles corresponds

to the average momentum transfer associated to the drag force. As the solid phase is
solved with the DEM, a drag force is applied on each particle individually. It is therefore
necessary to compute the horizontal solid-phase average (denoted 〈.〉s) of the momentum
transmitted by the drag force to each particle:

n
〈
fpfx

〉s
= Φ
πdp3/6

〈
fpfx

〉s
, (2.14)

and introducing the expression of the drag force (2.6),

n
〈
fpfx

〉s
= 3

4
Φρf
dp

〈
CD|| 〈u〉fxp − v

p||
(
〈u〉fxp − v

p
)〉s

, (2.15)

This expression requires the definition of the solid phase average 〈.〉s, which is presented
in the next sub-section.

The fluid model, which is classical in sediment transport (Drake and Calantoni, 2001;
Hsu and Liu, 2004; Durán et al., 2012; Revil-Baudard and Chauchat, 2013; Maurin et al.,
2015; Chauchat, 2018), is only closed using a mixing length model and a closure for the
drag force formulation. These closures are usual in the literature, and it has been shown
in Maurin (2015) and Maurin et al. (2015) that the results obtained in terms of granular
behavior are very weakly sensitive to the fluid closure adopted.
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2.1.3 Averaging procedure
In the framework of the volume average two-phase equations, Jackson (1997, 2000) proposed
an averaging procedure based on a weighting function, representing the volume in which the
average is performed. Considering the symmetry of the current problem and remembering
that the variables have no dependencies in the horizontal x and y directions, a cuboid
weighting function H with the same length and width as the 3D domain is applied. In
the vertical direction, in order to capture the strong vertical gradient of the mean flow,
the vertical thickness lz of the box is chosen as lz = dp/30, giving the following weighting
function

H(x) =


1
V

= 1
LBlz

, if z ∈ [−lz/2, lz/2],
0, otherwise,

(2.16)

where L and B denote respectively for the length and breadth of the domain. The volume
fraction is computed as

Φ(z) =
∑
p

∫
Vp
H(|z − z′|)dz′, (2.17)

where
∫
Vp

represents the integral over the volume of particle p. The average over the solid
phase of any scalar quantity γ is computed as

〈γ〉s = 1
Φ(z)

∑
p

∫
Vp
γ(z′)H(|z − z′|)dz′, (2.18)

This averaging procedure makes it possible to compute the total transfer of momentum
between the fluid and particles.

The fluid model should a priori be valid only if there is scale separation between the
macroscopic length (the flow height Hf in our case), the weighting function length scale lz,
and the particle diameter dp, i.e. Hf >> lz >> dp (Jackson, 1997). This is however not
the case as lz has been choosen such that lz = dp/30 in order to capture the very sharp
transition at the sediment bed interface. This may introduce uncertainties when computing
the fluid particle transfer of momentum and fluid stresses. However, Maurin et al. (2015)
showed, by comparison with monodisperse turbulent bedload transport experiments, that
the uncertainties on the computed averaged quantities are small, provided that the size of
the domain L×B is sufficiently large, typically L×B ≥ 20dp × 20dp.

The averaging procedure is also used to obtain granular continuum fields when post
processing the data, in particular to obtain the granular velocity field. This averaging
procedure is also known as coarse-graining and Weinhart et al. (2013) showed that
such spatial averaging method is necessary to obtain macroscopic fields consistent with
conservation laws of continuum theory.

2.1.4 Granular stresses
For a box with scale separation, it is possible to forget the discrete nature of the granular
bed and to consider it as a continuum phase. Goldhirsch (2010) proposed a rigourous
averaging procedure to compute the stresses of a granular medium. The author showed
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that the granular stresses at position x and time t are the sum of a kinematic and a
contact force contribution as

σpij(x, t) = σkij(x, t) + σcij(x, t). (2.19)

The computation of both contributions depends on the choice of a weighting averaging
function. For the same cuboid weighting function H as defined previously, it can be shown
(Andreotti et al., 2013; Maurin et al., 2015) that the stress formulation (2.19) simplifies to

σpij(z) = − 1
V

∑
p∈V (z)

mpv′pi v
′p
j −

1
V

∑
c∈V (z)

f ci b
c
j, (2.20)

where the sums are performed over the ensemble of particles p and contacts c inside the
volume V (z) such that z ∈ [z− lz/2, z + lz/2], v′pk = vpk − 〈v

p
k〉
s is the kth component of the

spatial velocity fluctuation of particle p, f c is the interaction force at contact c applied on
particle α by particle β and bc = xβ −xα is the branch vector. The first term corresponds
to the kinetic contribution and, similarly to the Reynolds stress tensor for the fluid phase,
it is induced by the particle velocity fluctuations during the flow. The second term, also
known as the Lowe-Weber stress tensor in the geomechanics community, corresponds to the
contact forces induced stress. As the discretization step lz has been chosen very small, the
branch vector can cross several vertical cells. In this case, the contact force is distributed
proportionally to the part of the branch vector contained in the cell. Maurin (2015) showed
that the stress value was not sensitive to the discretization lz, indicating the relevency of
this method. Due to the one dimensional structure of the flow, Maurin (2015); Maurin
et al. (2016) showed that, in the steady state bedload configuration, σpzz = Tr(σp)/3 = P p

and the only non diagonal terms which are not vanishing are σpxz and σpzx, with σpxz = σpzx.
The granular stress tensor can therefore be expressed classically as the sum of a pressure
term and a shear stress term

σpij(z) = −P pδij + τ pij, (2.21)

where τ pxz = σpxz is the only non-negligible shear stress term.

2.1.5 Extension to bidisperse configurations

For this PhD work, the coupled fluid-DEM model has been extended to bidisperse con-
figurations. For the DEM part of the model, the extension is almost direct. We denote
ds (resp. dl) the diameter of small (resp. large) particles. The only modifications lie on
the computation of the stiffnesses kn and ks adapting the rigid limit condition (eq. 2.4)
according to the size of particles. The particle diameter also appears in the expression of
the buoyancy force (eq. 2.5) and the drag force (eq. 2.6). The fluid interaction forces are
therefore computed according to the particle size.

Concerning the fluid phase, the main modification when considering bidisperse mixtures
lies in the momentum transfer by the fluid to particles n

〈
fpfx

〉s
, in which the solid-phase

average operator need to be extended to bidisperse cases. The same cuboid weighting
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function H as in equation (2.16) is used, with the vertical thickness lz = ds/30 computed
on the small particle diameter. The volume fraction of each class is computed as

Φs(z) =
∑
ps

∫
Vps

H(|z − z′|)dz′, (2.22)

Φl(z) =
∑
pl

∫
Vpl

H(|z − z′|)dz′, (2.23)

where ps (resp. pl) denotes the ensemble of the small (resp. large) particles, Φs (resp.
Φl) the volume fraction of small (resp. large) particles. The total volume fraction is
Φ = Φs + Φl. The average over the small particle phase of any scalar quantity γ is
computed as

〈γ〉small = 1
Φs(z)

∑
ps

∫
Vps

γ(z′)H(|z − z′|)dz′. (2.24)

Similarly, the average over the large particle phase is

〈γ〉large = 1
Φl(z)

∑
pl

∫
Vpl

γ(z′)H(|z − z′|)dz′. (2.25)

The total solid phase average is therefore computed as the sum over each class of the solid
phase average as

〈γ〉s = 〈γ〉small + 〈γ〉large . (2.26)

This averaging procedure allows the computation of average values for each class and for
the mixture. Finally the transfer of momentum from the fluid to the particle phase is
computed as

n
〈
fpfx

〉s
= Φs

πd3
s/6

〈
fpsfx

〉s
+ Φl

πd3
l /6

〈
fplfx

〉s
, (2.27)

and introducing the expression of the drag force (2.6),

n
〈
fpfx

〉s
= 3

4
Φsρf
ds

〈
CD|| 〈u〉fxps − v

ps||
(
〈u〉fxps − v

ps
)〉s

+ 3
4

Φlρf
dl

〈
CD|| 〈u〉fxpl − v

pl ||
(
〈u〉fxpl − v

pl
)〉s

. (2.28)

This extends the coupled fluid-DEM model to bidisperse configurations, and it can
now be used to study size-segregation.
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2.2 The bedload configuration: presentation and con-
tinuum description

Before using this model in bidisperse situations, the setup and main characteristics of
the bedload configuration are presented here in the case of a monodisperse simulation.
Indeed, the literature review performed in the introduction has shown that the segregation
dynamics is a response to the granular state of the bed. A clear description of the bedload
configuration is therefore necessary.

2.2.1 Numerical setup

Figure 2.3: Numerical setup. N layers of particles are deposited by gravity above a rough
bed made of fixed particles. The fluid free surface elevation is set to Hf = Nd+ hw, where
hw represents the water depth. Due to the slope α the fluid flows by gravity and entrains
particles.

The numerical setup is presented in figure 2.3. It is composed of a 3D domain, biperiodic
in both streamwise x and spanwise y directions. Particles of diameter d = 6 mm and
density ρp = 2500 kg.m-3 are considered, corresponding to typical glass beads used at
the INRAE laboratory. They are deposited by gravity above a rough layer made of fixed
particles randomly positioned between −d/2 and d/2. The number of particles is associated
to a number of layers N . The number of layers corresponds, in term of particle diameter,
to the height occupied by particles if the volume fraction is exactly the observed random
close packing Φ = 0.61. This defines the height of the bed H = (1/2 +N)d, where the 1/2
accounts for the fixed particles at the bottom. The particles are immersed in a fluid, here
water, of density ρf = 1000 kg.m-3. The free surface is fixed to Hf = Hd+ hw, where hw
represents the water depth. In this study the slope is fixed to 10% (5.7◦) to mimick steep
slope bedload transport, occuring in mountain streams. At initial time, the fluid flows by
gravity and sets particles into motion. After a rapid transient phase, during which fluid
and particles are accelerating, a steady state takes place at transport equilibrium.
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The bedload configuration will be illustrated with a simulation of N = 10 layers of 6
mm diameter particles and with a water depth of hw = 4.7d. The value of N has been
chosen high enough in order to ensure an erodible bed bottom boundary condition. Each
quantity is computed using the spatial averaging procedure (2.18) and are obtained every
∆t = 0.1s. The simulation lasts 300s and the profiles presented thereafter are obtained by
averaging all profiles once steady state is achieved, i.e. after about 20s.

2.2.2 Description of the bedload configuration
In the bedload configuration, different flow regimes take place at the same time, which are
described in this section. An hydrodynamic vision is adopted for the granular phase, which
is seen as a continuum material. Figure 2.4 shows the depth profiles of the volume fraction,
the fluid velocity, the particle velocity and the transport rate, the latter being the product
of the volume fraction with particle velocity. In all figures in this PhD manuscript, the fluid
mechanics convention is adopted, with depth on the vertical axis and quantities of interest
on x-axis. The figures exhibit three different regions. Below z ∼ 6d, the volume fraction is
almost constant around the random close packing Φ ∼ 0.61. This zone corresponds to the
quasi-static region, or creeping region, where the particle and fluid velocity profiles are
exponentially decreasing into the bed (see inset in semilog scale of figure 2.4c). The particle
velocity is very low in this zone and the quasi-static region has a negligible contribution to
the overall sediment transport rate. Above z ∼ 6d, the volume fraction decreases almost
linearly to zero. This region will be called flowing layer, or bedload layer, corresponding
to a transition zone between the quasi-static region to a pure fluid phase. Its thickness
has been shown to be proportional to the Shields number (Bagnold, 1956; Capart and
Fraccarollo, 2011) and most of the sediment transport is taking place in this layer (see
figure 2.4d). The velocity of both the fluid and the particles is strongly increasing with
elevation. Note that the total height of the bed is slightly larger than H due to dilatation
of the bed (reduction of the volume fraction). In the bedload layer, the three granular
classical flow regimes coexist (Andreotti et al., 2013) with a continuous transition from
a quasi-static flow regime at the lower boundary of the bedload layer to a dense regime
and then a dilute regime at the top boundary. The pure fluid phase takes place above
z ∼ 13.5d, where Φ = 0, until the free surface at z = 15.2d in this simulation. Note that
data for the particle velocity can be collected even in the pure fluid phase because of very
rare events of saltating particles reaching this region.

This complex phenomenology, with continuous transitions between the three different
granular flow regimes, makes the bedload configuration very rich when studying granular
mechanisms. This PhD work will mainly focus on the quasi static and dense flow regimes.

2.2.3 Granular rheology in bedload transport
A key issue for granular flows is to be able to relate the granular stress state to the kinetic
state. This is called rheology. Monodisperse dense dry granular flows are well described
by the µ(I) rheology (GDR MiDi, 2004; Jop et al., 2006; Forterre and Pouliquen, 2008).
Assuming a local rheology, i.e. that the granular stresses only depend on the local shear
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(a) (b)

(c) (d)

Figure 2.4: DEM simulation with N = 10 layers of particles and water depth hw = 4.7d. (a)
Volume fraction profile, (b) fluid velocity profile, (c) particle velocity with inset in semilog
plot, (d) transport rate profile. Dashed lines separate the different region of transport.
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rate and pressure, a dimensional analysis indicates that the dry inertial number I is the
only dimensionless parameter controlling the system, where

I = dγ̇p√
P p/ρp

. (2.29)

The shear to normal stress ratio µ = τ pxz/P
p and the volume fraction Φ therefore only

depend on the inertial number. Fitting DEM simulations and experiments, the following
phenomenological expressions have been obtained (Jop et al., 2005; da Cruz et al., 2005;
Pouliquen et al., 2006)

µ(I) = µc + µ2 − µc
I0/I + 1 , (2.30)

Φ(I) = Φmax − bI, (2.31)

with µc = 0.38, µ2 = 0.64, I0 = 0.279 and b = 0.31 are empirical data. This constitutive
law models the granular media as a viscoplatic material. µc represents the static friction
coefficient below which no motion is a priori possible. Creeping flow is possible below the
threshold µc but the flow is controlled by non local effects that the µ(I) rheology is not
able to capture.

To account for the presence of an interstitial fluid, one should replace in the constitutive
laws (2.30) and (2.31) the dry inertial number by the viscous inertial number Ivisc =
ηf γ̇p/P p or the turbulent inertial number Iturb = dγ̇p/

√
P p/(ρfCD) (Cassar et al., 2005)

depending on the interstitial fluid influence regime (Courrech du Pont et al., 2003).
With the coupled fluid DEM model, Maurin et al. (2016) studied the granular rheology

of monodisperse beds in bedload transport. In the dense part of the flow, despite the
presence of water, the authors showed that the dry inertial number is still the controlling
parameter. They found the µ(I) rheology to be valid in bedload transport in a wider
range of inertial numbers than the dry classical µ(I) rheology and proposed another set of
parameters µc = 0.35, µ2 = 0.97 and I0 = 0.69. They also proposed a slightly different law
for the volume fraction as Φ(I) = Φmax/(1 + aI), with a = 0.31.

2.2.4 Momentum balance
The averaging procedure presented in section 2.1.4 allows the computation of granular
stresses and therefore to adopt a continuum vision of the granular flow. In the dense and
quasi-static part of the bed, it is interesting to understand the stress repartition between
the fluid and the granular phase. This is made possible by writing the momentum balance
of both phases. Starting from the 3D average two-phase flow equations of Jackson (1997,
2000) (equations (2.8) and (2.9)), Revil-Baudard and Chauchat (2013) and Chauchat
(2018) showed that, for a unidirectional and steady state flow conditions, they simplifies
as

0 = ∂Sxz
∂z

+ ∂Rxz

∂z
+ ρf (1− Φ)g sin(α)− n

〈
fpfx

〉s
, (2.32)
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0 = ∂τ pxz
∂z

+ ρpΦg sinα + n
〈
fpfx

〉s
, (2.33)

0 = ∂P f

∂z
+ ρfg cosα, (2.34)

0 = ∂P p

∂z
+ (ρp − ρf )Φg cosα, (2.35)

These equations are expected to model the stress balance of both phases at transport
steady state. They bring information on the origin of stresses and, under some simpli-
fications, allow the derivation of analytical expressions of the granular stresses. These
analytical expressions, derived thereafter, will be used several times in the PhD manuscript.

By integration of equations (2.34) and (2.35) between an altitude z and the free surface
position Hf where P f (Hf ) = P p(Hf ) = 0, the two phase flow model predicts hydrostatic
pressure for both the fluid and granular phases

P f (z) = −ρfg cosα(Hf − z), (2.36)

P p(z) = −(ρp − ρf )g cosα
∫ Hf

z
Φ(ξ) dξ. (2.37)

Summing equation (2.32) and (2.33), a mixture momentum balance is obtained

0 = ∂Sxz
∂z

+ ∂Rxz

∂z
+ ∂τ pxz

∂z
+
(
ρf + (ρp − ρf )Φ

)
g sin(α). (2.38)

Maurin et al. (2016) showed that the viscous fluid shear stress Sxz is negligible in the
turbulent bedload configuration and it will therefore not be taken into account in this
study. In order to understand the repartition between the fluid and the granular stresses,
equation (2.38) is integrated between an altitude z and Hf , where both shear stresses are
assumed to vanish, leading to

Rxz(z) + τ pxz(z) =
(
ρf (Hf − z) + (ρp − ρf )

∫ Hf

z
Φ(ξ) dξ

)
g sin(α). (2.39)

Figure 2.5a shows the granular pressure P p and comparison with equation (2.37). Both
curves collapse showing that the granular pressure is indeed hydrostatic. Except in the
transition layer between pure fluid phase and dense flow, the granular pressure is linear
with depth, indicating that the small variations of Φ below the transition zone (below
z ∼ 6d in figure 2.4a) has a weak influence on the granular pressure profile.

The fluid shear stress can be computed from equations (2.12) and the granular shear
stress from equation (2.20) by computing contact forces and velocity fluctuations in the
DEM simulation. Figure 2.5b shows the Reynolds fluid stress together with the granular
shear stress τ pxz. The two phase flow model only indicates that the fluid and the granular
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shear stresses share a momentum source due to gravity (right hand side of equation (2.39)).
It is plotted in dashed line in figure 2.5b and it shows that the two phase flow model and
the DEM simulation are in perfect agreement. In the pure fluid phase (Φ = 0), all the
mixture shear stress is taken by the Reynolds shear stress and equation (2.39) simplifies
to

Rxz(z) = ρfg sin(α)(Hf − z), (2.40)

the classical expression of the turbulent fluid shear stress in free surface flows. In the
granular bed the fluid shear stress rapidly decreases to zero and only the granular shear
stress holds the momentum source.

To compute the granular shear stress with equation (2.39), the expression of the
volume fraction profile Φ is needed. However it is not easy to obtain as it results from an
equilibrium between the fluid and granular phase interactions. It can only be estimated
with the coupled fluid-DEM model presented previously or by solving the Jackson (2000)
equations and assuming a rheology to model the behavior of the granular phase. In order to
obtain an analytical expression of the granular shear stress, it is however possible to assume
a simplified volume fraction profile as a step function from φmax = 0.61 to 0 in H. This
idealized volume fraction is plotted in figure 2.5c. This profile contains the same granular
mass than the DEM one but assumes that the granular phase is transported without
dilatation of the bed. It corresponds to an idealized situation, where the transition from
the pure fluid phase to the dense sediment bed is discontinuous. For z ≤ H, turbulence
is assumed to be completely damped to zero, i.e. Rxz(z) = 0, and considering the step
concentration profile, equation (2.39) simplifies to

τ pxz(z) =
[
ρf (Hf − z) + (ρp − ρf )Φmax(H − z)

]
g sin(α), (2.41)

and by definition of the water surface height Hf − z = (Hf −H) + (H− z) = hw + (H− z),
it comes

τ pxz(z) = ρfg sin(α)hw +
[
ρpΦmax + (1− Φmax)ρf

]
gsin(α)(H − z). (2.42)

The first term of the right hand side is the fluid bed shear stress τb appearing in the classical
definition of the Shields number and represents the stress transmission by the flowing fluid
to the grains. The second term represents the variation of the shear stress with depth.
The same simplified step concentration profile can be applied to equation (2.37) yielding

P p(z) = −(ρp − ρf )Φmaxg cosα(H − z). (2.43)

Equations (2.42) and (2.43) are plotted in figure 2.5d with DEM data. It shows that,
except in the transition toward the pure fluid phase, the DEM stress profiles are very
well predicted by the two phase flow conditions. The simplified stress profiles may seem
restrictive, as they do not reproduce the transition from the pure fluid phase to the dense
granular flow, but it allows one to express both the granular pressure and shear stress only
as a function of geometrical and physical parameters of the flow.

In fact this step volume fraction profile corresponds to an idealized situation where
the fluid shear stress is completely transmitted to the granular bed at the discontinuity
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(a) (b)

(c) (d)

Figure 2.5: (a) Granular pressure from DEM simulation (full line) compared with equa-
tion (2.37) (dashed line). The dotted line indicates the geometrical bed position. (b)
Granular shear stress (orange line) and Reynolds shear stress (green line) from DEM
simulation and gravity term (dashed line) computed from equation (2.39). The dotted
line indicates the geometrical bed position. (c) Idealized volume fraction profile (dashed
line) compared with the DEM one (blue line) and (d) granular pressure (blue line) and
granular shear stress (orange line) from DEM simulation compared with the predicted
stress by equations (2.43) and (2.42).
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(z = H). Focusing on the granular shear stress, the DEM and analytical profiles correspond
almost perfectly as soon as z ≤ H. This indicates that in the DEM simulation the fluid
stress is almost completely transmitted to the granular bed below z ≤ H and that the
fluid does not provide any forcing and has a passive role inside the sediment bed. In
figure 2.5b, it can be observed that the fluid stress decreases very rapidly between the
line z = H = 10.5d and z = 10d. This indicates that the fluid shear stress is completely
damped in less than one diameter below the geometrical definition of the bed surface
z = H. Ouriemi et al. (2009) obtained the same results with another two-phase continuum
model. Below z = H, it will therefore be assumed that equations (2.42) and (2.43) model
perfectly the granular stresses and that the fluid shear stress is negligible.

2.2.5 Discussion on the Shields number definition

The Shields number θ is defined as the dimensionless fluid bed shear stress. By analogy
to a free surface flow on a fixed bed, the fluid bed shear stress is classicaly taken as
τb = ρfg sin(α)hw, where hw is the water depth. The volume fraction profile presented
in figure 2.4a shows that there is no clear separation between the pure fluid phase and
the granular bed and it is therfore difficult to measure a water depth. It is only possible
to define a geometrical water depth, corresponding to a virtual depth where all particles
are deposited and fully compacted at Φ = 0.61. Since water depth is difficult to measure,
Revil-Baudard and Chauchat (2013) and Maurin et al. (2015) proposed to define a Shields
number based on the Reynolds stress profile (see figure 2.5b) such that τb = max(Rxz).
Two definitions of the Shields number are then considered. The first definition, based on
hw, will be referred to as the macroscopic Shields number and the second one, based on
the maximum Reynolds Stress, as the microscopic Shields number. The latter gives values
of the Shields number smaller than the macroscopic one, i.e. for this configuration θ = 0.2
for the microscopic Shields number and θ = 0.3 for the macroscopic one. Indeed, due to
interactions with particles, a negative feedback applies on the fluid and the Reynolds shear
stress is rapidly damped to zero in the flowing layer (see figure 2.5b). This microscopic
Shields number should therefore be the relevant parameter when studying phenomena in
the bedload layer. However the fluid bed shear stress based on the geometrical water depth
appears in the expression of the granular shear stress (see equation (2.42)). Therefore the
macroscopic Shields number is as more relevant as the microscopic number when studying
phenomena below the bed surface.

In practice, the microscopic definition of the Shields number is difficult to use. This
definition indeed implies to be able to measure the Reynold stress profile which is far from
being easy. It is experimentally possible to measure the fluid velocity fluctuations and
to deduce a Reynold stress profile. In the field, with current techniques, measuring the
Reynold stress is extremely difficult. The macroscopic definition based on the water depth
is therefore more classical. Defining the water depth is also a subject of discussion. To
measure a water depth, the bed position should be defined, which is not obvious as the
transition layer between the dense bed and the pure fluid phase may reach several particle
diameters. But this is more a question of definition (where is the bed position ?) than a
technical difficulty.
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This discussion about both definitions of the Shields number is essentially relevent for
small water depths of the order of the particle diameter on steep slopes. Indeed, when
the water depth is large in comparison to the particle diameter, both definitions are very
close and it is therefore more convenient to use the macroscopic definition. For large water
depths, the width of the transition layer becomes negligible and there is no problem of
definition for the water depth.
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Chapter 3

Segregation mechanisms analysis and
continuum modelling in the
quasi-static regime

This chapter is dedicated to the description, analysis and modelling of size segregation
during bedload transport in the quasi-static regime. As pointed out in the introduction, size
segregation is still not yet well understood, in particular in configurations with complex
forcing such as bedload transport. It will be analysed using the coupled fluid DEM
model (chapter 2) in the framework of the dimensional analysis (aq. 1.7) presented in the
introduction (section 1.2). The aim is to understand size segregation in the quasi-static
part of the bed and to improve the continuum modelling parameterizations. In particular,
the influence of the three main parameters, which are the size ratio r, the inertial number I
and the small particle concentration φs, will be investigated through numerical experiments
in the bedload configuration. The results will then be analysed in the framework of the
segregation model of Thornton et al. (2006).

This work has led to the publication of a scientific article in Journal of Fluid Mechanics
(Chassagne et al., 2020b).

3.1 DEM simulations of segregation dynamics

3.1.1 Numerical setup
The numerical setup is presented in figure 3.1. In the following, subscripts l and s denote
quantities for large and small particles respectively. Initially, large particles of diameter
dl = 6 mm and small particles of diameter ds = 4 mm, defining a size ratio of r = 1.5,
are deposited by gravity over a rough fixed bed made of large particles. The particle and
fluid densities are fixed respectively to ρp = 2500 kgm-3 and ρf = 1000 kgm-3. The size of
the 3D domain is 30dl × 30dl in the horizontal plane in order to have converged average
values (Maurin et al., 2015) and is periodic in the streamwise and spanwise directions.
The number of particles of each class is assimilated into a number of layers, Nl and Ns.
The number of layers represents in terms of particle diameters the height that would be
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Figure 3.1: Numerical setup for Ns = 2. Initially, Ns layers of small particles (ds = 3 mm)
are deposited by gravity above Nl layers of large particles (dl = 6 mm). Ns varies from
0.01 until 2 with Nl varying accordingly in order to always have Nldl +Nsds = 10dl.

occupied by the particles if the volume fraction was exactly Φ = 0.61, the random close
packing observed in the simulation. Equivalently, the volume occupied by large particles
(resp. small particles) is 0.61 × 30dl × 30dl × Nldl (resp. 0.61 × 30dl × 30dl × Nsds).
Therefore, fixing Nl or Ns fixes the number of particles of each class. The height of
the bed at rest is defined by H = 1/2dl + Nldl + Nsds, where the 1/2dl term accounts
for the fixed particles at the bottom of the domain, and H is fixed to 10.5dl in all the
simulations. The number of layers of fine particles Ns varies from 0.01 (only a few small
particles) up to 2 layers (corresponding to figure 3.1), while Nl changes accordingly in
order to keep H = 10.5dl. The bed slope is fixed to 10% (5.7◦), representative of mountain
streams, and the water depth is set to hw = 2.6dl. It corresponds to a macroscopic Shields
number of θ = ρfghw sin(α)/[(ρp − ρf )gdl] = 0.17 and to a microscopic Shields number of
θ = max(Rf

xz/[(ρp − ρf )gdl]) ∼ 0.12− 0.13.
At the beginning of each simulation, the fluid flows by gravity and sets particles into

motion. A first transient phase takes place, during which fluid and particles are accelerating.
Along this period, segregation is very fast and at the end of the transient phase, the small
particles have already infiltrated into the first layers of the bed. It is therefore difficult to
study size segregation in the bedload layer. It would require numerical tricks that are not
easy to set up in order to keep small particles at the surface during the transient phase.
For these reasons, in this chapter, the study focuses on the dynamics of segregation once
the system is at transport equilibrium and small particles have reached the quasi-static
region.

The horizontal averaged volume fraction per unit granular volume of small and large
particles are defined as

φs = Φs

Φ , φl = Φl

Φ , (3.1)

where Φs (resp. Φl) is the volume fraction of small (resp. large) particles defined per unit
mixture volume as in the previous chapter. In the following, φs (resp. φl) will also be
called small (resp. large) particle concentration. By definition, the two concentrations sum
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to unity,
φs + φl = Φs

Φs + Φl

+ Φl

Φs + Φl

= 1, (3.2)

Lastly, zc is defined as the vertical position of the center of mass of small particles,computed
as

zc(t) =

∫
Φs(z)zdz∫
Φs(z)dz

, (3.3)

and dzc/dt is its velocity.
The results are presented in dimensionless form using the following dimensionless

variables,
z̃ = z

dl
, t̃ = t

√
g/dl,

˜〈vx〉p = 〈vx〉
p

√
gdl

. (3.4)

The large particle diameter dl has been chosen as a reference length scale. Indeed we
assume that the small particles are few enough not to perturb the bulk granular flow. The
segregation mechanisms are interpreted as a response to the mean flow assumed to be a
monodisperse granular flow of large particles. In the following, the tildes are dropped for
sake of clarity.

3.1.2 Results
Simulations have been performed for different numbers of layers of small particles Ns.
Figure 3.2a shows the temporal evolution of fine particle concentration profiles for the
case Ns = 2, corresponding to two layers of small particles deposited on top of a bed
made of large particles. At the beginning, the small particles, indicated by the high small
particle concentration regions in green, infiltrate rapidly into the first few layers of large
particles. As small particles infiltrate downward, large particles rise to the surface. The
DEM simulations exhibit a two-layer structure, with small particles sandwiched between
two layers of large particles. While infiltrating, the thickness of the small particle layer
gets slightly larger. Profiles of concentration for different times are presented in figure 3.2b.
The concentration profiles exhibit a Gaussian-like shape. After the transient phase, neither
the maximal value (see figure 3.2c) nor the width of the profiles evolve in time, suggesting
that the small particles infiltrate the bed as a layer having a constant thickness and being
just convected downward by segregation inside large particles.

The vertical time and volume-averaged streamwise velocity profile of the particle
mixture is plotted in figure 3.3a for all the simulations. All the curves are superimposed
meaning that the response of the granular medium to the fluid flow forcing is not modified
by the number of small particles. The granular forcing is therefore the same for all the
simulations independently of the number of small particles at the initial condition. Between
z = 3 and 8 approximately, the velocity profiles are linear in the semi-logarithmic plot,
indicating that the velocity is exponentionally decreasing in the bed. This is characteristic
of a quasi-static granular flow (Komatsu et al., 2001), or creeping flow (Houssais et al.,
2015; Ferdowsi et al., 2017). Due to the presence of a fixed layer of particles, the velocity
vanishes at the bottom of the domain. It is interesting to note that the entire bed is
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(a)

(b)

(c)

Figure 3.2: (a) Typical temporal evolution of fine particle concentration profile φs for the
case Ns = 2, (b) concentration profiles in small particles for different times for the case
Ns = 2 and (c) time evolution of the maximal value of φs for all simulations.
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(a) (b)

(c)

Figure 3.3: (a) Streamwise space time averaged particle velocity as a function of the height,
(b) time averaged volume fraction of the granular mixture and (c) evolution of the vertical
position of the mass center of small particles with time.
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in motion, even if the velocity can be very low at the bottom of the quasi-static region.
The time averaged solid volume fraction of the mixture is plotted in figure 3.3b for all
the simulations. The quasi-static region is characterized by the bed at random close
packing (Φ ∼ 0.61). Above z ∼ 8, the volume fraction decreases to zero, corresponding
to a transition zone between a quasi-static region and a pure fluid phase. Note that due
to this decompaction of the bed at the surface, the total height of the bed is slightly
larger than 10.5dl. For the case Ns = 2, the velocity profile is slightly modified as well as
the volume fraction profile with a small increase of volume fraction around z ∼ 5. This
very small increase originates from mixture effects and the volume fraction can exceed
the random close packing (Cumberland and Crawford, 1987). The modifications on the
velocity and volume fraction profiles are however small enough to consider that the small
particles do not perturb the mean monodisperse flow. This supports the assumption that
the segregation mechanisms can be considered in this configuration as a response to the
mean monodisperse granular flow.

Since the small particles infiltrate the bed as a layer, the center of mass of the small
particles, zc, is a representative position of the entire layer. Figure 3.3c shows the temporal
evolution of this position for all the simulations, in a semi-logarithmic plot. After the
initial transient phase, the curves become linear, meaning that zc is a logarithmic function
of time

zc = −a ln(t) + b. (3.5)

In equation (3.5), the coefficient a corresponds to the absolute slope of the curve and
characterises the segregation velocity (dzc/dt = −a/t). Whatever the number of small
particles in the simulation, figure 3.3c shows that all the curves are parallel to each other,
meaning that a is independent of the number of layers of small particles, Ns. Therefore the
segregation velocity dzc/dt is also independent of the number of layers of small particles.

In the following, these simulations will be analysed using the dimensional analysis
presented in the introduction (equation (1.7)) with the aim to confirm the dependence of
the segregation flux on the inertial number I and on the local concentration φs.

3.1.3 Dependence on the inertial number
In figure 3.4a, the dimensionless segregation velocity is plotted against the large particle
inertial number I = γ̇pdl/

√
P p/ρp, where γ̇p is the time averaged granular shear rate and

P p is the time averaged granular pressure. Note that in our configuration, and contrary
to non-erodible granular flows, there is a large variation of I with z (figure 3.4b). The
segregation velocity is higher for larger inertial number. The linearity of the curves shows
that the segregation velocity is indeed a power law of the inertial number. For all the
simulations a similar exponent is obtained, ranging from 0.81 to 0.88, and a best fit gives
a value of 0.85 for the mean exponent,

dzc(t)
dt

∝ I0.85(zc(t)). (3.6)

Interestingly, Fry et al. (2018) obtained, for dry granular flows at higher inertial
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(a) (b)

Figure 3.4: (a) Segregation velocity dependence on the local inertial number, (b) inertial
number profile.

numbers (I ∈ [10−2, 1]), an exponent 0.84, very close to the 0.85 exponent in the present
configuration. Our results suggest that the behaviour observed by Fry et al. (2018)
is valid in a wider range of inertial numbers, in particular, in the quasi-static regime
(I ∈ [10−5, 10−2]).

The scaling with the inertial number (eq. 3.6) is in line with the theory of Savage and
Lun (1988), who suggested relating the segregation velocity to the shear rate. Indeed the
inertial number is the dimensionless ratio between the shear rate and the square root of
pressure. In the bedload configuration, the pressure increases linearly with depth while
the shear rate exponentially decreases in the bed. Therefore, most of the variation of
the inertial number is contained in the shear rate. A scaling with the inertial number
allows the effect of pressure P p to be taken into account, which is small in this configu-
ration. On the contrary in the configuration of Fry et al. (2018), the pressure displayed
strong variations and the authors found a scaling with the inertial number and not with
the shear rate. The similarity with the results of Fry et al. (2018) is encouraging in the
understanding of size segregation in general and supports a scaling with the inertial number.

Equation (3.6) allows the temporal evolution of the fine particles center of mass to be
understood. Figure 3.4b shows the inertial number profile for all simulations. The linearity
of the curves, for z ≤ 8, in the semi-logarihtmic plot indicates that the inertial number is
an exponential function of z in the quasi-static part of the bed. Taking an exponential
profile to the power 0.85, I0.85 is also an exponential function of z and can be written as

I0.85(z) = I0e
z/c. (3.7)
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Ns a c error (%)
0.01 0.863 0.873 1.159
0.05 0.850 0.864 1.647
0.25 0.823 0.847 2.916
0.5 0.843 0.862 2.254
1 0.833 0.857 2.800
1.5 0.820 0.828 0.976
2 0.849 0.828 2.473

Table 3.1: Values of coefficients a (slope of the center of mass) and c (exponential decay of
the inertial number to the power 0.85) obtained from fitting the curves of figures 3.3c and
3.4b and the error in percentage.

Introducing (3.7) into expression (3.6) leads to

dzc(t)
dt

= −b1e
zc(t)/c, (3.8)

with b1 a positive constant. Equation (3.8) can be integrated∫
e−zc/cdzc =

∫
−b1dt, (3.9)

leading to
ce−zc/c = b1t+ C0 ∼ b1t for t� |C0/b1| (3.10)

It can be rewritten as
zc(t) = −c ln(t) + b2, (3.11)

where b2 = −c ln(b1/c) is a constant.

This analysis shows that the logarithmic descent of the small particle center of mass
is a consequence of the dependence of the segregation velocity on the inertial number.
This is confirmed by the comparison between the coefficients a in equation (3.5) and c in
equation (3.7), that should be equal. Fitting of the elevation of both the center of mass
(figure 3.3c) and I0.85 yields coefficients a and c (see table 3.1). The maximal difference
between a and c is around 3% confirming the present analysis and showing that the inertial
number is indeed the controlling parameter of the segregation velocity.

It has been verified in appendix A, that the segregation dynamics observed here
and in particular the scaling of the segregation velocity with the inertial number were
not dependent on the model parameters such as the material friction coefficient µ, the
restitution coefficient en or the Richardson-Zaki exponent. These parameters have been
varied and in all cases the same dynamics is observed with a scaling with the inertial
number to the power 0.85.
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(a) (b)

Figure 3.5: (a) Center of mass velocity dependence on the inertial number at the bottom
of the layer of small particles, (b) small particle concentration profiles at time t = 40435
and vertical position of the bottom of the layer (×).

3.1.4 Bottom controlled segregation

While this analysis clearly explains the trends observed, figure 3.4a shows that for a given
value of the inertial number, different segregation velocities are obtained depending on
the initial number of small particles, Ns. This is quite surprising and seems at first in
contradiction with figure 3.3c, where it was observed that the segregation velocity (given
by the slope of the curve) is independent of Ns. To understand this apparent contradiction,
it is necessary to change the point of view adopted in this problem.

Since the inertial number follows an exponential profile, it varies importantly throughout
the layer of small particles. Thus, according to equation (3.6) the segregation velocity
should be lower at the bottom than at the top of the layer. This lower segregation velocity
at the bottom of the layer implies that all the small particles above cannot move downward
faster than the lowest particles in the layer. Defining the position of the bottom of the
layer as zb = zc −W/2, with W = 2Nsds/dl the small particle layer thickness, figure 3.5a
shows the dependence of the segregation velocity on the inertial number at the bottom
of the layer. All the curves collapse on a master curve and a power law relationship is
found between the segregation velocity and the inertial number at the bottom of the layer
Ib(zc) = I(zb),

dzc(t)
dt

= −α0I
0.85
b (zc(t)), (3.12)

where α0 is a positive constant independent of the number of layers of small particles.
This result shows that the segregation velocity of the layer is indeed completely controlled
by the inertial number at the bottom of the small particle segregating layer and it does
not contain any dependence on the number of small particle layers, Ns.
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The layer thickness has been chosen to be two times the thickness it would occupy if
only small particles were present, W = 2Nsds/dl. This choice is motivated by the fact that
the layer is formed of a mixture of both large and small particles. Figure 3.5a shows that
for the different cases, the obtained width is indeed consistent with the actual thickness.
Note that when Ns tends to zero, zb tends to zc the center of mass of the small particles.
In the extreme case where only one small particle is present, this position corresponds to
its center. Figure 3.5b shows, at dimensionless time t = 40435, the profiles of small particle
concentration, where the crosses denote the position of the bottom of the layer. The lower
limbs of the concentration profiles are superimposed and the position of the bottom of the
layer is identical for all tested values of Ns. Whatever the number of small particles, they
pile up above the bottom position, where the segregation dynamics is controlled.

This dynamics is clearly due to the exponential inertial number profile, which imposes a
very strong decrease of the segregation velocity with depth, resulting in the formation of a
small particle stable layer. The exponential decrease of the inertial number is characteristic
of flows on erodible beds and this bottom controlled segregation dynamics is therefore
expected to occur in any flow of this type.

It is remarkable that this continuum description, in terms of mass center position
evolution (eq. 3.12), is applicable even for the cases Ns = 0.01 and Ns = 0.05. These cases
correspond to very few non interacting particles and a continuum vision seems at first
hardly relevant. This can be explained by the bottom controlled dynamics. Indeed, the
bottom position is a stable position for segregation. If the particle is late and is above zb,
it will soon reach the bottom position because the inertial number is higher at its position.
And inversely if the particle is in advance compared to the bottom position. Therefore,
the isolated particles are placed at the bottom position. Since for cases Ns = 0.01 and
Ns = 0.05, zb and zc are located at the same elevation, the continuum description captures
the dynamics of isolated particles.

This analysis highlights the dependence of segregation on the inertial number in bedload
transport. Furthermore, the bottom of the small particle layer is shown to be a key position
that controls segregation. In particular, it explains why the small particles infiltrate the
bed as a layer of constant thickness.

3.1.5 Size ratio influence
The analysis presented above provides a reference position that describes the segregation
dynamics. In the following, the effect of the size ratio is investigated. The previous
simulations were all performed at the same size ratio, r = 1.5. According to the dimensional
analysis performed in the introduction (section 1.2), the following relationship is expected,

dzc(t)
dt

= −α0G1(r)I0.85
b (zc(t)). (3.13)

A set of simulations in which the diameter of the small particles is varied has been
performed. It covers a range of size ratios from r = 1.15 to 3. In all these simulations, the
number of small particle layers is fixed to Ns = 1. The dependence of the center of mass
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(a) (b)

Figure 3.6: (a) Center of mass velocity dependence on the inertial number at the bottom
of the layer of small particles for different size ratio. Note that for r = 2.5, r = 2.75 and
r = 3, simulations were performed with a 15dl × 15dl box in order to gain computation
time. (b) Best fit coefficient between the segregation velocity and the inertial number
to the power 0.85 times α0 as a function of the size ratio minus one (for each curve of
figure 3.6a, one point is obtained). The function G1 is plotted as dashed line.

velocity on the inertial number at the bottom of the layer of small particles is plotted
in figure 3.6a. A similar power law relationship is recovered, showing that the inertial
number is still the controlling parameter. The best fit provides a 0.82 exponent for the
inertial number dependency, which is in the range of values found previously. However, to
remain consistent with the previous analysis an exponent of 0.85 is used in what follows.
The curves are parallel but not superimposed, which implies that, as expected, the size
ratio plays an important role in the segregation dynamics. The dependence with the size
ratio is presented in figure 3.6b, where the ratio between the segregation velocity and the
inertial number to the power 0.85 is plotted as a function of the size ratio minus one. The
dependence of the segregation velocity increases strongly with the size ratio and tends
to zero when r is close to unity, cancelling segregation in the monodisperse limit. The
following functional form for G1 is proposed,

G1(r) = 0.45
(
e(r−1)/0.63 − 1

)
, (3.14)

fitting empirically the data (see the dashed line in figure 3.6b).

The maximal segregation efficiency at r = 2 reported by Golick and Daniels (2009),
Thornton et al. (2012) and Guillard et al. (2016) is not recovered in this configuration, as
the segregation velocity still increases for r > 2 (r − 1 > 1 in figure 3.6b). These studies
essentially focused on the rise of a few large particles. In particular, Guillard et al. (2016)
focused on the rise of a single large intruder in a small particle bed. This difference in the
size ratio dependency could be explained by an asymmetry in the segregation behaviour,
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as already observed by Van der Vaart et al. (2015) with shear cell experiments. Indeed,
there is no reason that the infiltration of a small particle in a bed made of large particles
should have a maximum efficiency at a given size ratio. The larger the size ratio, the easier
the small particles find holes in which to fall. In addition, when the size ratio increases
beyond r ∼ 6, the segregation regime is modified from a frictional regime (kinetic sieving)
toward a purely gravity controlled regime called spontaneous percolation. The rise of a
large particle is however only a frictional process, whatever the size ratio (Guillard et al.,
2016). My intuition is that the rise of a large particle is related to the number of contacts
with surrounding particles, which increases with the size ratio. When the size ratio is
infinite, there is an infinite number of contacts and small particles should act as a pure
buoyant fluid. On the contrary the infiltration of a small particle is related to the size of
the holes in which to fall, which increases with the size ratio. These assumptions would of
course need more work but it could explain the segregation asymmetry observed by Van
der Vaart et al. (2015) in a shear cell.

To summarize, the results presented here suggest that the segregation dynamics in
bedload transport can be described, to leading order, by the following relationship,

dzc
dt

= −α0G1(r)I0.85
b , (3.15)

where α0 can be computed from figure 3.5a and G1(r) is given by equation (3.14).

3.2 Discussion in the framework of continuum mod-
elling

Beyond the dependence on the inertial number and the size ratio, it is remarkable that
the trends observed for the evolution of the center of mass and for the segregation velocity
are independent of the number of small particle layers, Ns. Indeed, as the latter is
increased from 0.01 to 2, the configuration moves from a few isolated (non-interacting)
small particles to two consistent layers of small particles infiltrating collectively inside
the coarse bed. Therefore, it is expected that the increase of Ns, would increase the local
particle concentration and reduce the segregation velocity due to particle hindrance effects.

This independence of the trend observed in the segregation velocity seems in contradic-
tion with the literature (e.g. Savage and Lun, 1988; Dolgunin and Ukolov, 1995; Van der
Vaart et al., 2015; Jones et al., 2018). Indeed, in these studies, a major influence of the
local small particle concentration on the segregation velocity has been evidenced. In order
to explain this apparent contradiction and to get more insight into the physical processes
at play, the results are discussed in the following as a function of local mechanisms within
the framework of the continuum model of Gray and Thornton (2005), Thornton et al.
(2006) and Gray and Chugunov (2006).
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3.2.1 Local mechanism interpretation

In order to explain the apparent independence of the results on the concentration of small
particles, a local analysis in the theoretical framework of continuum modelling is developed.
The model of Thornton et al. (2006) (eq. 1.22), presented in the introduction chapter
(section 1.3.2), will be used as a baseline. In the present configuration, the velocity field has
only a streamwise component (along x) and all quantities only depend on z. Therefore, the
advection by the bulk flow ∇ · (φsu) vanishes. As a first step, diffusion is not considered
and equation (1.22) simplifies to a purely hyperbolic equation,

∂φs
∂t
− ∂Fs

∂z
= 0. (3.16)

Remembering that the segregation flux is the product of the segregation velocity by
the small particle concentration and combining the form proposed in the introduction
Fs ∝ G1(r)Iζφs(1 − φs) with the analysis of the DEM simulations (eq. 3.15), it can be
written as

Fs = α0G1(r)I0.85φs(1− φs), (3.17)

where α0 can be fitted in the DEM results from equation (3.12). Since the inertial number
is exponentially decreasing with depth (eq. 3.7), the segregation flux simplifies to

Fs = Sr0e
z/cφs(1− φs), (3.18)

with Sr0 = α0G1(r)I0. The inertial number does not depend on the number of small
particles (figure 3.4b) so Sr0 is independent on the initial number of small particles and
only depends on the response of the granular mixture to the fluid flow forcing through I0
and c. For r = 1.5, the corresponding value of Sr0 obtained from the DEM simulations
is: Sr0 = 3.70× 10−8. Due to the exponential decrease of the inertial number in the bed,
the form of the segregation flux, Fs, is also exponential with z. May et al. (2010) already
proposed an analytical solution for an exponential flux, but the flow was shear-driven
from the bottom. Proceeding similarly, the analytical solution can be derived using the
method of characteristics (appendix B), for which the initial condition is simply a step of
concentration representing an initial pure layer of small particles lying on a bed made of
large particles.

φs(z, t = 0) =
{

0, z < zi,
1, z ≥ zi,

(3.19)

with zi = Nldl.

The analytical solution is plotted in figure 3.7 for the case Ns = 1 and r = 1.5.
Figure 3.7a corresponds to the very first times of the solution, while figure 3.7b is the
long time solution. The initial discontinuity leads to an expansion fan delimited by two
characteristics (see figure 3.7a). The first, denoted z1, is going down and meets the bottom
of the domain at time t1. This time is very long as it corresponds to the the time at which
the first small particle touches the bottom boundary position. That case was never reached
in our DEM simulations, and the analytical solution is therefore not plotted until this
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(a) (b)

Figure 3.7: Case Ns = 1, r = 1.5 space time evolution of the concentration in small
particles φs at different time scales. Note that the scale in the abscissa is drastically
different in both figures.

time. The second characteristics delimiting the expansion fan is going up and is denoted z2.
When it meets the top of the domain at time t2 (i.e. when the first large particle reaches
the top boundary, which happens very rapidly), a shock is created that travels downward.
It can be shown (see Appendix B) that the analytical solution for time t2 ≤ t ≤ t1 is

φs(z, t) =


0, z < z1(t),
φfan(z, t), z1(t) ≤ z ≤ z2(t),
0, z > z2(t),

(3.20)

where z1 is the characteristic curve (eq. 3.21) delimiting the bottom of the rarefaction
zone, z2 is given by the shock equation (3.22) delimiting the top of the rarefaction zone
and φfan is the solution in the expansion fan given by equation (3.23),

z1(t) = zi − c ln
(

1 + Sr0
c
ezi/ct

)
, (3.21)

dz2

dt
= −Sr0ez2/c (1− φs(z2, t)) , (3.22)

φfan(z, t) = 1
2 −

c

Sr0t
e−z/c + c

Sr0t
e−(z+zi)/(2c)

√
1 +

(
Sr0t

2c

)2
e(z+zi)/c. (3.23)

In figure 3.7b, the long time solution shows similar properties than the DEM results.
In particular, the small particle phase seems to segregate as a layer of constant thickness.
Despite the complexity of the solution (3.20), some simplifications can be made for long
times (but smaller than t1) to study the properties of the analytical solution. Indeed for
t � 4c/Sr0ezi/c ∼ 1000, it can be shown (see appendix B) that the square root term in
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equation (3.23) simplifies to

1 +
(
Sr0t

2c

)2
e(z+zi)/c ∼

(
Sr0t

2c

)2
e(z+zi)/c, (3.24)

and the volume fraction profile φs in the rarefaction fan simplifies as,

φfan(z, t) = 1− c

Sr0t
e−z/c. (3.25)

Some simplifications can also be made on the boundary curves of the rarefaction zone
z1 and z2. Introducing the long time solution (3.25) in the shock equation of z2 (3.22), a
much more simple equation of z2 is obtained for long times

dz2

dt
= −c

t
, (3.26)

for which the solution is
z2(t) = −c ln (t) + β, (3.27)

where β is an integration constant. Concerning the characteristic curve z1, the term in the
logarithm in equation (3.21) simplifies for long times to

1 + Sr0
c
ezi/ct ∼ Sr0

c
ezi/ct, (3.28)

and the following expression is obtained for z1

z1(t) = −c ln(t)− c ln
(
Sr0
c

)
. (3.29)

Therefore, the upper and lower bounds of the small particle layer, z2 and z1, both move
down asymptotically as −c ln(t), and the layer thickness z2(t)− z1(t) is constant. Lastly,
the form of the flux considered in the continuum model Fs ∝ I0.85φs(1− φs) implies that
the vertical velocity of the small particles ws = −Fs/φs is

ws(z, t) = −Sr0
I0
I0.85(z)(1− φs(z, t)). (3.30)

Using equation (3.25), the vertical velocity can be expressed for long times as

ws(z) = −Sr0
I0
I0.85 c

Sr0t
e−z/c, (3.31)

and remembering that I0.85 = I0e
z/c,

ws(z) = −c
t
. (3.32)

Considering long time solutions and an imposed forcing by the inertial number, the
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(a) (b)

Figure 3.8: (a) Profiles of concentration at time t = 80870 with the continuum model
without diffusion for several values of Ns. Long time expression (3.25) is indicated as
dashed line. The same values of Sr0 and c have been used. (b) Comparison between DEM
simulations ( ) and segregation model ( ) of the profile of concentration φs for the
case Ns = 1 at time t = 80870.

model exhibits the exact same behavior observed in the DEM simulations. First, the small
particles move down as a layer into the coarse particles, with the lower and upper bounds
showing a logarithmic decrease with time (equations 3.27 and 3.29). This decrease, at a
common slope −c related to the forcing, imposes a constant layer thickness with time, as
observed in the DEM simulations. The consequence is that the segregation velocity of the
small particles is the same throughout the layer (eq. (3.32)). Considering the formulation
of the downward velocity of small particles (eq. 3.30), this means that the product of the
small particle concentration and the inertial number is constant within the small particle
layer, so that

ws(z, t) = −Sr0
I0
I0.85(z)(1− φs(z, t)) = −c/t. (3.33)

This is a very important property. At a given time, it means that the shape of the small
particle concentration profile responds directly to the variation of the inertial number as a
function of z. At a point within the layer, the decrease of the inertial number observed
when going downward is compensated for by an increase of the term 1 − φs, and so
a decrease of the small particle concentration. This competition between the effect of
the inertial number and the local concentration results in the shape of solution profiles
presented in figure 3.8a, for which the expression is given by equation (3.25).

In order to corroborate the explanation of the mechanisms at play, the lower bound of
the small particle layer z1 for which φs = 0 is considered. It corresponds, in figure 3.8a, to
the position where all profiles collapse to zero at the bottom. This position is the lower
bound of the rarefaction fan and corresponds to the bottom of the small particle layer.
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Ns 0.01 0.05 0.25 0.5 1 1.5 2
|z1 − zb|

z1
(%) 0.28 0.22 0.50 0.09 0.04 0.73 0.95

Table 3.2: Mean error between the bottom position from the DEM simulations zb and
from the continuum model z1. The maximal error of less than 1% between both positions
suggests agreement.

At this position, as φs = 0, the segregation velocity (eq. 3.30) is only a function of the
inertial number at the bottom of the layer:

ws(z, t) = −Sr0
I0
I0.85
b , (3.34)

where I0.85
b = I0.85(z1). As the segregation velocity is constant throughout the layer, this

means that the vertical velocity of the whole layer is controlled by the inertial number
at the bottom position. This corresponds exactly with the observations in the DEM
simulations in §3.1.4, where the segregation velocity was shown to collapse as a function
of the inertial number at a position considered to be the bottom of the small particle layer.
The correspondence between the inertial number at the bottom position zb observed in
DEM and calculated from the analytical continuum model z1 (table 3.2) confirms that the
mechanisms described here are indeed the ones at play in the DEM simulations.

Finally it is interesting to note in figure 3.8a, that all the profiles tend to zero at the
same position, meaning that the bottom position is the same whatever the quantity of
small particles. This confirms the DEM result that the segregation velocity is independent
of Ns. Indeed, if there are more small particles, they pile up above the others without
changing the position of the bottom where the segregation dynamics is controlled.

To summarize this section, the continuum model has shown its ability to reproduce the
main properties of the DEM results. The complex analytical solution has been analysed
for long times. The small particle phase segregates as a layer of constant thickness, the
velocity of which is controlled by the value of the inertial number at the bottom position.
This layer behaviour is shown to be related to a local equilibrium between the influence of
the concentration and of the inertial number. This explains the apparent contradiction
with the literature concerning the effect of the concentration. The φs constant lines are
parallels, going down at the same velocity, but this is the results of the combined effects of
the inertial number and small particle concentration. So, there is a concentration effect in
this segregation problem. Of course this complex segregation dynamics is the results of
the complex forcing with an exponential inertial number profile.

The continuum model without diffusion, enabled understanding of the local segregation
mechanisms and gave insights into the underlying physical mechanisms. While this model
gives a good agreement at first order, as shown in figure 3.8b, it clearly lacks diffusion in
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order to reproduce quantitatively the DEM simulations.

3.2.2 Diffusion and upscaling in a continuum framework

The continuum model used in the previous subsection can be expanded to account for
diffusion (Gray and Chugunov, 2006), in order to quantitatively reproduce the DEM
results. The equation to be solved is then given by,

∂φs
∂t
− ∂Fs

∂z
= ∂

∂z

(
D
∂φs
∂z

)
, (3.35)

with a segregation flux of the form Fs = Sr0e
z/cφs(1− φs), with Sr0 = 3.70× 10−8 fitted

on the DEM simulations, and a diffusion coefficient D(z), which is supposed to depend
only on the vertical coordinate z.

Equation (3.35) is complex and the full solution can not be computed analytically. In
the present work, a long time asymptotical solution is presented. At long times, DEM
simulations have shown that the shape of the concentration profile φs is self-similar and is
only advected downward like a travelling wave. Indeed, the layer of small particles moves
down as a layer of constant thickness as −c ln(t) (see equation (3.11)) and the shape of
the concentration profile does not evolve with time. The following change of variable is
proposed to place the problem in the moving frame associated with the small particles,

τ = t, ξ = z + c ln(t). (3.36)

Equation (3.35) in the moving frame becomes

∂φs
∂τ

+ c

τ

∂φs
∂ξ
− ∂

∂ξ

(
Sr0
τ
eξ/cφs(1− φs)

)
= ∂

∂ξ

(
D(ξ − c ln(τ))∂φs

∂ξ

)
. (3.37)

For a travelling wave, the solution to equation (3.37) should not depend on time τ .
Assuming ∂φs/∂τ = 0, this requires that τD(ξ− c ln(τ)) is independent of τ . This implies

∂

∂τ
(τD(ξ − c ln(τ))) = 0, (3.38)

and distributing the derivative with τ , the following differential equation is obtained

D′(ξ − c ln(τ))− 1
c
D(ξ − c ln(τ)) = 0, (3.39)

for which the solution is
D = D0e

(ξ−c ln(τ))/c = D0e
z/c. (3.40)

This shows that the only way to obtain a time independent solution is that the diffusion
coefficient has an exponential structure with the same vertical dependence as the advection
flux Fs. This exponential shape for the difusion coefficient is not really surprising. Indeed,
diffusion is expected to be stronger for a more agitated bed, which in this configuration
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decreases exponentially. Previous works (Campbell, 1997; Utter and Behringer, 2004; Cai
et al., 2019) proposed to relate the diffusion coefficient to the shear rate. As I0.85 = I0e

z/c,
equation (3.40) shows that, in the quasi-static part of the bed, the diffusion coefficient
should be proportional to the inertial number with the same dependence as the segregation
flux. Under this assumption, equation (3.37) becomes

c
∂φs
∂ξ
− ∂

∂ξ

(
Sr0e

ξ/cφs(1− φs)
)

= ∂

∂ξ

(
D0e

ξ/c∂φs
∂ξ

)
. (3.41)

By integration, and imposing φs → 0 when ξ → ±∞, the following equation is obtained

∂φs
∂ξ
− Sr0
D0

φs

[
φs −

(
1− c

Sr0
e−ξ/c

)]
= 0, (3.42)

for which the solution is

φs = e
−Sr0
D0

ξ− c2
D0

e−ξ/c

C − Sr0
D0

∫ ξ

−∞

(
e
−Sr0
D0

ξ′− c2
D0

e−ξ
′/c
)
dξ′

, (3.43)

where C is a constant satisfying the mass conservation Ns =
∫+∞
−∞ φsdξ. The travelling

wave solution has a complex dependency on ξ and contains an integral which cannot be
computed analytically. A semi-analytical approach is developed, where the integral is
computed numerically and a numerical optimization is performed on the C coefficient so
that

∫+∞
−∞ φsdξ corresponds to the initial mass of small particles introduced in the model.

Figure 3.9 compares the travelling wave solution (3.43) with concentration profiles from
the DEM simulations (case Ns = 1, r = 1.5) at different times. The D0 coefficient was
computed in order to minimize the root mean square of the difference between the DEM
and the travelling wave solution. The travelling wave solution agrees very well with all
DEM profiles. Although the DEM concentration profile seems Gaussian, equation (3.43)
shows that the profile is complex and not symmetric. This could have been inferred from
the analytical solution without diffusion (figure 3.8a), which is not symmetric and exhibits
a discontinuity at the top.

In order to keep the thickness of the small particle layer constant, both the advection
and the diffusion coefficients must have the same exponential vertical structure. Defining
a Peclet number as the ratio between the segregation intensity and the diffusion coefficient,
Pe = Sr(z)/D(z) = Sr0/D0, the travelling wave solution leads to a constant Peclet
number with depth. The relative effect of segregation and diffusion fluxes is constant and
independent of z. At each depth, the balance between advection and diffusion has to be
the same to maintain the constant layer thickness observed in the DEM simulations.

The value of the Peclet number increases with the number of layers of small particles Ns

and is plotted in figure 3.9b. Since the value of Sr0 is the same whatever the number of layers
of small particles, this result suggests that the value of the diffusion coefficient decreases
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(a) (b)

Figure 3.9: (a) Travelling wave solution ( ) and concentration profiles in the moving
frame from DEM simulations at different times for the case Ns = 1, r = 1.5, Pe = 3.86.
t = 40435 ( ), t = 50543 ( ), t = 60652 ( ), t = 70761s ( ), t = 80870 ( ),
(b) Value of the Peclet number as a function of the number of layers of small particles.

with Ns. This would indicate that diffusion is more efficient when there are fewer small
particles. This is not surprising. Indeed if small particles are more concentrated, it will be
more difficult for them to diffuse in the large particles. In addition, the mean value of the
local small particle concentration φs globally increases with Ns (see figure 3.5b). Therefore,
the dependence of the diffusion coefficient with Ns could be a global manifestation of a
dependence of the diffusion coefficient with the local concentration φs. This dependence
could be interpreted as a hindrance effect.

This study has shown that both the segregation flux and diffusion need to be pro-
portional to the inertial number to the power 0.85 in order to represent the dynamics of
segregation in bedload transport.

3.3 Conclusion
Vertical size-segregation in bedload transport has been studied with both a discrete and
continuum approach. Focusing on the quasi-static region - common to any granular flow
on an erodible bed - it has been shown with DEM simulations that small particles infiltrate
the coarse quasi-static bed with the same behavior, irrespective of whether there are
just a few isolated particles or two coherent layers of small particles. All the different
configurations exhibit the same segregation velocity, related to a power law of the inertial
number, generalizing the results observed for larger inertial numbers in confined bidisperse
granular mixtures without fluid (Fry et al., 2018). In the present configuration, the
dynamics of the infiltration of small particles is totally controlled by the bottom of the
small particle layer, as the inertial number decreases exponentially from the top to the
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bottom of the layer. As a consequence, the small particles segregate down as a layer of
constant thickness.

The continuum size-segregation model of Gray and Thornton (2005), Thornton et al.
(2006) and Gray and Chugunov (2006) has been shown to reproduce quantitatively the
DEM simulations, with a small particle layer of constant thickness segregating at a velocity
independent of the thickness of the layer. In the continuum model, this comes from a
perfect balance, at any elevation, between the effect of the inertial number and the local
small particle concentration. This analysis demonstrates that the macroscopic segregation
behavior always results from a local equilibrium between the inertial number forcing and
the local small particle concentration. Moreover, based on the derivation of an analytical
solution with a travelling wave approach, the results show that the diffusion coefficient
and the segregation flux in the continuum model should have the same dependency on the
inertial number, leading to a constant Peclet number.

This chapter represents an original contribution on segregation processes in bedload
transport, and more generally in granular flows. This is a first step toward upscaling
particle scale results of grain size-segregation in continuum models for sediment transport.
The macroscopic effects controlling size segregation have been understood. They have
however not been related to the mechanisms at the particle scale. This is investigated in
the next chapter.
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Chapter 4

From particle-scale to continuum
modelling of size segregation

The results presented in the previous chapter has given a precise description of both the
dynamics and the controlling parameters of size segregation during bedload transport in
the quasi-static regime. The continuum model shows very good agreement with the DEM
simulations, indicating that size segregation can indeed be interpreted as a combination of
advection and diffusion. The advection and diffusion coefficients have been shown to be
directly proportional to the inertial number to the power 0.85. Although very accurate, this
parametrisation still lacks a physical basis that could explain the form and dependencies
of the coefficients.

The study presented in this chapter is the result of a collaborative work with Hugo
Rousseau, PhD student at INRAE, and has led to submission of a scientific paper in
Journal of Fluid Mechanics, currently under review. The prepint is available at https:
//arxiv.org/abs/2005.09435. This work originates from the observation that there is
no continuum model for size segregation based on the particle scale forces. Based on
the segregation force of Guillard et al. (2016) and interparticle drag force of Tripathi
and Khakhar (2011a) presented in the introduction, Hugo Rousseau derived a new three
phase flow model (two granular phases and one fluid phase) and a new advection-diffusion
segregation model. The derivation provides advection and diffusion coefficient formulations
as a function of particle scale forces, giving them a clear physical origin. The contribution
of my PhD work is the development of a numerical method to solve this new advection-
diffusion model and the analysis with the help of the results presented in the previous
chapter.

In a first section, the derivation of the new advection-diffusion model is briefly presented.
Then the numerical method is developed in section 4.2. The results are presented and
compared with the DEM simulations in section 4.3.1. The new advection and diffusion
coefficients are analysed to interpret the results obtained with the DEM simulations
(section 4.3.2). By comparison with the DEM simulations, missing dependencies are
revealed in the particle scale forces and new parametrisations are proposed.
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Figure 4.1: Forces applied on a single large intruder in a small particle bed immersed in a
fluid. Interparticle forces are pictured in red and hydrodynamic forces in blue.

4.1 Advection-diffusion segregation model based on
particle-scale forces

In the introduction chapter, it has been shown that a single large intruder of diameter
dl in a small particle bed of diameter ds is submitted to four forces : its own weight
P = −ρpVlg cos(α), a granular buoyancy force Fb, a segregation force Fseg and a granular
drag force Fd. The granular buoyancy force was shown by Tripathi and Khakhar (2011a)
to be proportional to the granular pressure as Fb = −Vl/Φ∂P p/∂z. The segregation force,
evidenced by Guillard et al. (2016), is proportional to the granular pressure gradient
and it has been shown in the introduction that it can be considered as a default of
granular buoyancy force. The granular drag force has been demonstrated by Tripathi
and Khakhar (2011a) to be a Stokesian drag force proportional to the granular viscosity
and to the velocity difference between the intruder wl and surrounding particles wp as
Fd = −cπdlηp(wl − wp). In the bedload configuration, one also has to consider a fluid
buoyancy force F f

b = ρfVlgcos(α), where ρf is the fluid density, and a fluid drag force F f
d .

For an intruder inside the bed, fluid inertial effects are small and can be neglected. The
fluid drag force can therefore be approximated as a Stokesian drag force (Stokes, 1851)
F f
d = 3πηfdl(wl − wf ), where ηf is the fluid viscosity and wf is the vertical fluid velocity.

The equation of motion of the intuder is therefore,

ρpVl
dwl
dt

=P + F f
b + Fb + Fseg + Fd + F f

d

=− ρpVlg cos(α) + ρfVlgcos(α)− Vl
Φ
∂P p

∂z

− Vl
(
F(µ, r)− 1

Φ

)
∂P p

∂z

− cπdlηp(wl − wp)− 3πηfdl(wl − wf ).

(4.1)
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Due to the presence of the fluid, the granular pressure gradient is reduced to ∂P p/∂z =
−(ρp−ρf )Φg cos(α) and the granular buoyancy force is Fb = (ρp−ρf )Vlg cos(α). Therefore
the sum of the fluid and granular buoyancy force compensates exactly the weight of the
large intruder : P + Fb + F f

b = 0. The equation of the intruder simplifies as

ρpVl
dwl
dt

=− Vl
(
F(µ, r)− 1

Φ

)
∂P p

∂z

− cπdlηp(wl − wp)− 3πηfdl(wl − wf ).
(4.2)

In this equation, the forcing mechanism for the rise of the large particle is the segregation
force. Note that the pressure gradient is negative (pressure increases with depth) so
that the segregation force is applied in the upward direction. Both drag forces corre-
spond to resistive forces and slow down the motion of the intruder. This equation allows
one to describe the vertical evolution of an intruder in a small particle bed immersed in
a fluid. The fluid is here considered passive and only acts through buoyancy and drag forces.

In order to derive the advection-diffusion model, the first step has been to adapt
equation (4.2) to a collection of large particles. Following Jackson (2000), this is done by
multipliying each force by the number of large particles per unit volume. This led to the
derivation of a new three phase flow model for size segregation (see appendix C for the full
derivation made by Hugo Rousseau). The mass and momentum conservation equations of
the small particle phase are

∂Φs

∂t
+ ∂Φsws

∂z
= 0 (4.3)

ρp
[
∂Φsws
∂t

+ ∂Φswsws
∂z

]
=− ∂ps

∂z
− Φs

∂pf

∂z
− Φsρ

pg cos(α) + 18ηfΦs

d2
s

(wf − ws)

− 6cηpΦ
d2
l

(
ws − wm

)
+ Φl

(
F(µ, r)− 1

Φ

)
∂P p

∂z
.

(4.4)

Based on a dimensional analysis, Rousseau et al. (subm) compared the granular and
fluid stokes numbers and showed that the vertical fluid drag force can be neglected in the
bedload configuration. The equivalent ambiant granular fluid formed by the surrounding
small particles is indeed much more viscous than the fluid. Then, following the same
procedure as in Thornton et al. (2006), Rousseau et al. (subm) isolated the vertical
velocity of small particles from the momentum equation and introduced it in the mass
conservation equation to obtain the following advection-diffusion model for size segregation
(see appendix C)

∂φs
∂t

+ ∂

∂z
(Srφsφl) = ∂

∂z

(
D
∂φs
∂z

)
, (4.5)

with
Sr = F ′Stp∂P

p

∂z
, and D = φsP

pStp

Φ , (4.6)

where F ′ = F(µ, r)− 1/Φ, Stp = ρpdl
√
gdl/6cηp, φs is the small particle concentration and

Rémi Chassagne 61



Chapter 4. From particle-scale to continuum modelling of size segregation

Φ is the mixture volume fraction. Note that because the pressure gradient is negative, the
advection coefficient is negative and small particles segregate downward. The advection-
diffusion equation (4.5) has been made dimensionless and the same dimensionless variables
as in the previous chapter have been used to derive this equation,

z̃ = z

dl
, t̃ = t

√
g/dl, ṽ = v√

gdl
, P̃ p = P p

ρpdlg
(4.7)

In the following, the tildes have been dropped for clarity. This segregation model bridges the
gap between the particle scale forces and continuum approaches of size segregation during
bedload transport. Rousseau et al. (subm) verified that in the bedload configuration and
for a unidirectional granular flow, the multiphase flow model and the advection-diffusion
model are equivalent, showing the consistency of the hypothesis made to derive the latter
model.

Similarly to the derivation of the Thornton et al. (2006) model, it has been necessary
to assume that the total volume fraction is constant, i.e. Φ = Const, meaning that the
granular flow is incompressible. In the quasi-static part of the bed, the volume fraction
is at the random close packing Φ ∼ Φmax. For bidisperse bed, mixtures of particles with
different sizes lead to a local increase of the volume fraction. The amount of small particles
is however small compared with the number of large particles and figure 3.3b shows that
this local increase can be neglected and that the volume fraction can indeed be considered
constant in the quasi-static part of the bed.

The segregation coefficient F was observed by Guillard et al. (2016) to depend on µ
(see figure 4.2) and the authors proposed the following fit on the data,

F(µ) = 2.4 + 0.73 exp (−(µ− µc)/0.051) , (4.8)

where µc is the static friction coefficient. This fit was obtained for 2D DEM simulations in
the dense regime and is therefore only valid in this flow regime, i.e. for µ ≥ µc. This study
however focuses on the quasi-static regime where µ < µc and where the proposed fit can
not be used. Figure 4.2 also shows that F only have small variations with µ and a quite
large scatter of the points around the fit. For all these reasons, F will at first be assumed
constant such that F ′ = F − 1/Φmax = 1.

Estimation of the advection and diffusion coefficients expressed in equation (4.6)
requires the granular viscosity ηp = |τ pxz|/γ̇p, appearing in the granular Stokes number, and
the granular pressure P p. Viscosity and pressure are input parameters of the segregation
model, the segregation dynamics being interpreted as a response to the granular state
of the bed mixture. If a continuum granular model with segregation were considered,
one could describe the granular phase as a mixture coupled with this segregation model.
The profiles of τ pxz, P p and γ̇p are the response of the mixture granular phase to the fluid
forcing, and are therefore inputs of the segregation model.

In the present case, the simplified expressions of the shear stress and granular pressure
are taken from the derivation made in chapter 2 (eq. (2.42) and (2.43)), assuming the same
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Figure 4.2: Empirical segregation function F(µ) measured by Guillard et al. (2016) with 2D
DEM simulations sketched in figure 1.5b. Each cross corresponds to a DEM simulation and
the red continuous line correponds to proposed fit F(µ) = 2.4+0.73 exp (−(µ− µc)/0.051).

water depth as in the DEM simulations, corresponding to a macroscopic Shields number
θ = ρfghw sin(α)/[(ρp − ρf)gdl] = 0.17. These expressions were obtained assuming an
idealized step volume fraction profile in the momentum balance between fluid and granular
phase. As this study focuses on the quasi-static part of the bed, they are particularly
adapted to model the granular stresses in our problem, as shown in chapter 2.

The expression of the shear rate would require the resolution of the granular rheology.
However, there is still no consensus on the granular rheology of the quasi-static part of the
bed. The aim of the present study is to analyze size-segregation processes and modelling.
Therefore, in order to avoid discrepancies due to an inaccurate description of the granular
rheology and to focus on the segregation mechanisms, the shear rate γ̇p is directly fitted
on DEM simulations

γ̇p = γ̇0e
z/s0 , (4.9)

and plotted in figure 4.3a. The dimensionless shear stress τ pxz and granular pressure P p

are estimating from equations (2.42) and (2.43) as

τ pxz = ρf

ρp
sin(α)hw +

[
Φmax + (1− Φmax)

ρf

ρp

]
sin(α)(H − z), (4.10)

P p = Φmax
ρp − ρf

ρp
cos(α)(H − z). (4.11)

These two profiles are plotted against DEM data in figure 4.3b and c. They fit perfectly
the DEM profiles and they will therefore be used as inputs for the advection and diffusion
coefficients (4.6). Differentiating equation (4.11) with z provides the pressure gradient
∂P p/∂z = −Φ(ρp − ρf)/ρpcos(α), needed in the advection coefficient. All parameters of
the advection-diffusion model (4.5) can now be computed.
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(a) (b) (c)

Figure 4.3: Shear rate (a), shear stress (b) and granular pressure (c). Full line are data
from the DEM simulations and dotted lines are computed from equations (4.9), (4.10) et
(4.11), with γ̇0 = 1.68e− 7 and s0 = 0.75

The form of the advection and diffusion coefficients are more complex than those
proposed in the previous chapter for the Thornton et al. (2006) model and the new
advection-diffusion model can not be solved analytically. In the next section, a numerical
method for the new advection-diffusion model is proposed.

4.2 Numerical resolution strategy

In this section, the numerical resolution of the advection diffusion model (4.5) is presented.
The advection and diffusion coefficients can be computed from the granular state of the
mixture of small and large particles and are function of the vertical elevation z only.
The small particles are transported by a non-linear advection flux noted Fs(z, φs) =
Sr(z)φs(1−φs) and a diffusion flux noted FD = D(φs, z)∂φs/∂z. As shown in the previous
chapter, this kind of advection-diffusion problem, with a non linear advection flux can lead
to formation and propagation of shocks (see figure 3.7). Therefore, a shock capturing finite
volume method is adopted. This method is classical in transport equations and a general
and exhaustive description can be found in reference books, such as Patankar (1980) and
LeVeque (2002).
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4.2.1 Formulation of the finite volume method

The spatial domain is subdivided into cells of discretization ∆z and a time step ∆t is
considered (see figure 4.4). The average of φs in a cell centered in zj and at time tn is
noted

φnsj = 1
∆z

∫ zj+1/2

zj−1/2

φs(z′, tn) dz′. (4.12)

By spatial integration of equation (4.5) between zj−1/2 and zj+1/2, we get

∂

∂t

∫ zj+1/2

zj−1/2

φs(z′, t) dz′ = −
(
Fs(zj+1/2, φs(zj+1/2, t))− Fs(zj−1/2, φs(zj−1/2, t))

)
+
(
FD(zj+1/2, φs(zj+1/2, t))− FD(zj−1/2, φs(zj−1/2, t))

)
(4.13)

The time derivative is approximated by a first order Euler scheme as

∂

∂t

∫ zj+1/2

zj−1/2

φs(z′, t) dz′ = ∆z
∆t

(
φn+1
sj
− φnsj

)
, (4.14)

where the expression of φnsj (equation (4.12)) has been introduced. We introduce the
following notations, representing the mean value of the fluxes over one time step,

F n
sj−1/2

= 1
∆t

∫ tn+1

tn
Fs(zj−1/2, φs(zj−1/2, t)) dt, (4.15)

F n
Dj−1/2

= 1
∆t

∫ tn+1

tn
FD(zj−1/2, φs(zj−1/2, t)) dt. (4.16)

Assuming that the fluxes in equation (4.13) can be approximated by their temporal average
values, equation (4.13) becomes

φn+1
sj

= φnsj −
∆t
∆z

(
F n
sj+1/2

− F n
sj−1/2

)
+ ∆t

∆z
(
F n
Dj+1/2

− F n
Dj−1/2

)
. (4.17)

This equation indicates that the value of φnsj evolves according to the incoming and outgoing
fluxes at the edges of the cell. The difficulty of the finite volume method is to estimate
the value of these fluxes. Indeed, their expressions (4.15) and (4.16) are complex, and can
not be computed directly. Classically, they are assumed to depend on the cell averaged
value of the concentration on each edge of the cell

F n
sj+1/2

= f(φnsj , φ
n
sj+1

), (4.18)

where f is some numerical flux function. The choice of the numerical scheme corresponds
to a choice of function f to estimate the flux. As the segregation and diffusion fluxes do
not have a similar form, different schemes will be used for each of the flux and are detailed
in the following.
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Figure 4.4: Schematic view of the finite volume grid considered for the numerical resolution
of the advection-diffusion model

4.2.2 Estimation of the advective flux with Godunov scheme
This section focuses on the estimation of the advective flux. As we have seen in the
previous chapter, this kind of non-linear advection coefficient can lead to the formation
and propagation of shocks. For this reason, we choose a Godunov scheme that is able
to capture shock dynamics. It has been derived by Godunov (1959) especially to solve
discontinuous solution of hydrodynamics equations. The derivation of the Godunov fluxes
are presented here for the specific quadratic advective flux considered in this model.

The aim is to estimate the advective flux. Its expression (eq. 4.15) shows that it is
only necessary to estimate the evolution with time of the concentration at the edge of
the cell and to integrate with time. Let us suppose that φs(z, tn) is constant inside a
cell equal to its mean value, i.e. φs(z, tn) = φnsj for zj−1/2 < z < zj+1/2. This defines a
piecewise constant function with discontinuity at each cell edge. The idea of the Godunov
scheme is to consider each discontinuity as a Riemann problem, to solve it with the method
of characteristics and to estimate the associated flux. Considering the discontinuity at
zj−1/2, the resolution of Riemann problems shows that a discontinuity can lead to shock
propagation or rarefaction wave. Five different configurations are possible which are
sketched in table 4.1. Cases (a) and (e) correspond to shock propagations, while cases (b),
(c) and (d) correspond to rarefaction waves.

Classical analysis with the method of characteristics shows that the characteristic lines
(gray lines in the figures of table 4.1) propagates at a velocity

cn = ∂Fs
∂φs

∣∣∣∣∣
n

j−1/2
(4.19)

= Sr(zj−1/2)(1− 2φs) (4.20)

In addition the solution is constant on the characteristic lines equal to the value of
the concentration at time tn. Therefore, on the left of the shock or the rarefaction
wave, characteristic lines propagate at a velocity cn = Sr(zj−1/2)(1 − 2φnsj−1

) and the
solution is φnsj−1

along them. On the right, characteristic lines propagate at a velocity
cn = Sr(zj−1/2)(1− 2φnsj) and the solution is φnsj . Inside the rarefaction wave, the solution
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Configuration Conditions F n
sj−1/2

(a)

φnsj <
1
2 and

φnsj−1
< 1− φnsj

F n
sj−1/2

= Fs(zj−1/2, φ
n
sj

)

(b)

φnsj−1
< φnsj <

1
2

F n
sj−1/2

= Fs(zj−1/2, φ
n
sj

)

(c)

φnsj−1
<

1
2 < φnsj F n

sj−1/2
= Fs(zj−1/2,

1
2)

(d)

1
2 < φnsj−1

< φnsj F n
sj−1/2

= Fs(zj−1/2, φ
n
sj−1

)

(e)

φnsj−1
>

1
2 and

φnsj > 1− φnsj−1

F n
sj−1/2

= Fs(zj−1/2, φ
n
sj−1

)

Table 4.1: The five different possible configurations for the Riemann problem around
discontinuity at zj−1/2, their conditions for occurence and the corresponding Godunov flux.
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is in between φnsj−1
and φnsj . To estimate the flux equation (4.15), we need the value of the

concentration along z = zj−1/2 and for all times during tn and tn+1. One can observe that,
whatever the case, the solution is constant with time along the line z = zj−1/2.

• For cases (a) and (b), φs(zj−1/2, t) = φnsj , and replacing in equation (4.15), F n
sj−1/2

=
Fs(zj−1/2, φ

n
sj

).

• For cases (d) and (e), φs(zj−1/2, t) = φnsj−1
, and F n

sj−1/2
= Fs

(
zj−1/2, φ

n
sj−1

)
.

• Configuration (c) is more complex as the line z = zj−1/2 is inside the rarefaction
wave. One can note that the line z = zj−1/2 is in fact a vertical characteristic line, so
with a zero velocity. The only characteristic line with zero velocity are for φs = 1/2.
Therefore φs(zj−1/2, t) = 0.5 and Fsj−1/2 = Fs(zj−1/2, 0.5).

The Godunov flux can therefore take three different values. It remains to know when
each case occurs. In case (a), the shock is going to the left. Its velocity is therefore negative.
Applying the Rankine-Hugoniot relation, the shock velocity is given by

s =
Fs(zj−1/2, φ

n
sj

)− Fs(zj−1/2, φ
n
sj−1

)
φnsj − φnsj−1

< 0, (4.21)

which simplifies, by replacing the expression of Fs, into

φnsj−1
< 1− φnsj . (4.22)

In addition, the characteristics coming from φnsj have a negative velocity, meaning
Sr(zj−1/2)(1 − 2φnsj) < 0, and remembering that Sr(zj−1/2) is negative, yields φnsj < 0.5.
Similar reasoning can be performed for all configurations and are summurized in table 4.1.
This gives a full description of all configurations and allows us to compute the Godunov
flux. Noting that the conditions for case (b) are included in conditions for case (a), and
that the conditions for case (d) are included in the conditions for case (e), this can be
simply written as

F n
sj−1/2

=


Fs(zj−1/2, φ

n
sj−1

), if φnsj−1
> 1/2 and φnsj > 1− φnsj−1

,

Fs(zj−1/2,
1
2), if φnsj−1

< 1/2 < φnsj ,

Fs(zj−1/2, φ
n
sj

), if φnsj < 1/2 and φnsj−1
< 1− φnsj .

(4.23)

Because the form of the flux Fs is quadratic in φs and has a unique minimum in φs = 1/2,
it is possible to verify that the expression of the Godunov flux (4.23) is strictly equivalent
to the following expression

F n
sj−1/2

= max
(
Fs

(
zj−1/2,max(φnsj−1

,
1
2)), Fs(zj−1/2,min(φnsj ,

1
2)
))

, (4.24)

which is much more simple to implement as it takes into acount all configurations in one
expression.
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The stability condition of the Godunov scheme has not been discussed yet. In the
above analysis, we have implicitely assumed that the shocks or waves coming from one
discontinuity could not meet with another one coming from a neighbouring cell. To ensure
this condition, the shocks and waves should not travel more than half a cell (∆z/2) during
the time ∆t. The maximal wave or shock velocity is given by

cn = max
j
|Sr(zj)(1− 2φnsj)|, (4.25)

which depends on time. The stability condition has to be computed at each time step and
can be written as

max
j
|Sr(zj)(1− 2φnsj)|

∆t
∆z ≤

1
2 . (4.26)

4.2.3 Estimation of the diffusive flux
The diffusion flux can be estimated more easily than the advective flux. Indeed, the
diffusive flux is of the form (LeVeque, 2002) :

FD(z, φs) = D(φs, z)
∂φs
∂z

. (4.27)

The diffusion coefficient depends on φs and z. As φs evolves in time, the diffusion coefficient
will have to be evaluated at each time step and will be noted Dn(z). Applying it in zj−1/2
(φns is extrapolated linearly in zj−1/2) and assuming that it remains constant during a time
∆t, the numerical diffusion flux (4.16) is given by

F n
Dj−1/2

= Dn
j−1/2

∂φs
∂z

∣∣∣∣∣
n

j−1/2
. (4.28)

The gradient of φs in zj−1/2 can be estimated easily with the value of φs in each neighbouring
cell

F n
Dj−1/2

= Dn
j−1/2

φnsj − φ
n
sj−1

∆z , (4.29)

and the numerical advective flux is a function of φnsj−1
and φnsj . It can be interpreted as

a natural physical diffusion, as the concentration goes from one cell to another at a rate
proportional to the difference of concentration, and Dn

j−1/2 representing a conductivity
between the two cells. The numerical scheme (4.17) becomes

φn+1
sj

= φnsj −
∆t
∆z

(
F n
sj+1/2

− F n
sj−1/2

)
+ ∆t

∆z2

(
Dn
j+1/2φ

n
sj+1
− (Dn

j+1/2 +Dn
j−1/2)φnsj +Dn

j−1/2φ
n
sj−1

)
. (4.30)

The stability condition associated with the explicit diffusion scheme is

max
j
|Dn(zj, φnsj)|

∆t
∆z2 ≤

1
2 , (4.31)
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Figure 4.5: Schematic view of the first cell and the fluxes entering in the cell. The flux
coming from outside the domain are imposed to be the opposites of the fluxes coming
from the second cell.

and has to be evaluated at each time step.

4.2.4 Boundary condition

As for the Thornton et al. (2006) model, a no flux condition is applied at each boundary
cell of the domain, i.e. in j = 0 and j = J . This boundary condition ensures that no mass
is leaving the domain. Due to the finite volume construction, the first cell is delimited by
j = −1/2 and j = 1/2, and the last cell by j = J − 1/2 and j = J + 1/2 (see example of
the first cell in figure 4.5). The finite volume scheme (4.17) in the first cell becomes,

φn+1
s0 = φns0 −

∆t
∆z

(
F n
s1/2
− F n

s−1/2

)
+ ∆t

∆z
(
F n
D1/2
− F n

D−1/2

)
. (4.32)

Equations (4.24) and (4.29) provides expressions to compute the fluxes coming from
j = 1/2. In order to impose a no flux condition in j = 0, and to avoid a leak of mass
at the boundary, the fluxes entering inside the domain in j = −1/2 are imposed to
be the opposites of the fluxes coming from the second cell, i.e. F n

s−1/2
= −F n

s1/2
and

F n
D−1/2

= −F n
D1/2

. This can be interpreted as a reflective boundary for the segregation wave.
Everything leaving the domain is reintroduced, and the total initial mass is conserved with
time. The numerical scheme in the first cell becomes

φn+1
s0 = φns0 − 2 ∆t

∆zF
n
s1/2

+ 2 ∆t
∆zF

n
D1/2

. (4.33)

Proceeding similarly on the last cell, the numerical scheme is

φn+1
sJ

= φnsJ + 2 ∆t
∆zF

n
sJ−1/2

− 2 ∆t
∆zF

n
DJ−1/2

. (4.34)
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4.2.5 Algorithm implementation

The first step is to define a vertical grid with a discretization ∆z. Based on the stability
of the Godunov scheme and the diffusion scheme ∆tn is computed at each time step as

∆tn = ∆z
2 min

 1
max
j
|Snr (zj)(1− 2φnsj)|

,
∆z

max
j
|Dn(zj, φnsj)|

 , (4.35)

This ensures the stability of both conditions.

In order to gain computational time, the numerical resolution is done in a vectorial
form. We note

Φn
s =



φnsJ...
φnsj...
φns0


. (4.36)

Following (4.30) and boundary conditions (4.33) and (4.34), the Godunov flux vector is
formulated as

F n
godunov =



−2F n
sJ−1/2

F n
sJ−1/2

− F n
sJ−3/2

...
F n
s3/2
− F n

s1/2

2F n
s1/2


, (4.37)

where F n
sj

is given in equation (4.24). The diffusion flux is computed through the matricial
operator Mn

F n
diffusion = Mn × Φn

s , (4.38)

where Mn is the diffusion matrix which has to be computed at each time step and ×
denotes for the matrix multiplication. Following (4.30) and boundary conditions (4.33)
and (4.34), the diffusion matrix is a tridiagonal matrix and is formulated as

Mn =



−2Dn
J−1/2 2Dn

J−1/2 0 . . . 0
Dn
J−1/2 −(Dn

J−1/2 +Dn
J−3/2) Dn

J−1/2 0
0 . . . . . . . . .

...
Dn
j+1/2 −(Dn

j+1/2 +Dn
j−1/2) Dn

j−1/2 0
. . . . . . . . .

... Dn
3/2 −(Dn

3/2 +Dn
1/2) Dn

1/2
0 . . . 0 2Dn

1/2 −2Dn
1/2


.

(4.39)
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(a) (b)

Figure 4.6: Spatio temporal evolution of the small particle concentration for the case
Ns = 1.5, computed with the advection-diffusion model (a) and obtained with the DEM
simulation (b).

Finally the concentration vector at time tn+1 is computed as

Φn+1
s = Φn

s −
∆tn
∆z F

n
godunov + ∆tn

∆z2M
n × Φn

s . (4.40)

This numerical model has been implemented in python and is available at https:
//gitlab.com/remich/advdiffsegmodel. It is very efficient as it makes it possible to
solve the segregation problem in a few minutes on a personal computer while the DEM
simulations needed several weeks on our lab cluster and on several cores. It is in addition
not restrictive to the advection-diffusion model presented in section 4.1. Indeed, the
expression of the advection and diffusion coefficients Sr and D given in (4.6) have not
been used to derive the numerical model and the code can be adapted very easily to any
functional form of Sr and D.

4.3 Results and Discussion

4.3.1 Results

The advection-diffusion equation (4.5) with advection and diffusion coefficients (4.6) is
solved numerically with the procedure presented in the previous section. The initial small
particle concentration profile is a step of concentration

φs(t = 0, z) =
{

0, z < zi,
1, z ≥ zi,

(4.41)
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4.3. Results and Discussion

(a) (b)

Figure 4.7: Mass center evolution with time (a) and concentration profile at time t = 60000
(b) obtained with the advection diffusion model (full line) and with the DEM simulation
(dashed line) for the case Ns = 1.5.

with zi = Nl and the case Ns = 1.5 is considered in the following. The spatio temporal
evolution of the small particle concentration computed with the advection-diffusion model
is plotted in figure 4.6a and compared with the DEM simulation in figure 4.6b. The
advection diffusion predicts a similar dynamics as the DEM simulation with a logarithmic
descent of the small particles with time. The small particles seem to percolate as a
travelling wave but the profile is not self similar, i.e. the width of the wave increases while
percolating.

More quantitatively, figure 4.7a compares, with the DEM simulation, the time evolution
of the center of mass zc(t). After the first transient phase, the center of mass position is
linear in the semi-logarithmic plot confirming the logarithmic descent with time of the
small particles, as observed in the previous chapter (section 3.1.2), zc(t) = −a ln(t) + b.
The absolute slope a of the logarithmic descent, characterising the segregation velocity
(dzc/dt = −a/t), are however different. Fitting the curves of figure 4.7a, the absolute slope
is 0.59 with the advection diffusion model and 0.82 in the DEM simulation, representing a
28% error.

Figure 4.7b shows the small particle concentration at time t = 60000 obtained with the
DEM simulation and with the advection-diffusion model. Both profiles are approximately
at the same position, the bottom and maximal values are almost at the same position
and the small particles are constricted in a layer. It indicates that the bottom controlled
mechanism observed in the previous chapter is well reproduced by the advection diffusion
model. However, the Gaussian like profile is not reproduced, the profile being wider than
in the DEM simulation, with a bell shape, and as a consequence the maximum value is
also smaller.

These results suggest that this new advection-diffusion model, with the physically based
parametrisations for the advection and diffusion coefficients, is relevant to qualitatively
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predict the segregation dynamics observed with the DEM simulations. This is quite
remarkable. The particle scale forces of Guillard et al. (2016) and Tripathi and Khakhar
(2011a) were obtained in completely different configurations and in 2D for the segregation
force. In addition both the particle scale forces were derived in the dense regime while they
are used here in the quasi-static regime. The capacity of the advection-diffusion model
to reproduce qualitatively the DEM results indicates that the segregation force and the
granular drag force may certainly be also valid in the quasi-static regime.

The error on the logarithmic slope and on the shape of the concentration profile
indicates that some efforts are needed to improve the precision of the model. In the
next section, the advection and diffusion coefficients are analysed in order to determine
the origin of the discrepancies observed. Missing dependencies for the coefficients are
highlighted in section 4.3.3, and new formulations for the segregation function F ′ and the
drag coefficient c are proposed to better reproduce the DEM simulation.

4.3.2 Interpretation

The advection diffusion model is able to reproduce the logarithmic descent of the small
particles as a layer. However the slope of the logarithmic descent in the semilog plot
(figure 4.7a) is too small in comparison with the DEM simulation. To understand this
difference, it is interesting to focus on the advection coefficient dependence with z. Indeed,
in the previous chapter, it has been shown analytically that the logarithmic descent is a
direct consequence of an exponential advection coefficient Sr = Sr0e

z/c (equations (3.27)
and (3.29)), and that the slope of the logarithmic descent is exactly −c. Therefore, the
discrepency in the center of mass velocity should originate in the advection coefficient. The
profile of the particle scale advection coefficient (4.6), Sr = F ′Stp∂P p/∂z, is compared with
the DEM advection coefficient in figure 4.8a. The semilog plot shows that the advection
coefficient is exponential in both cases. Close to the top, both coefficients are quite close
but differ when going deeper into the bed, and the slopes are not the same. This explains
why the slope of the mass center evolution are not observed to be the same in figure 4.7a,
and indicates a missing dependency with z in the advection coefficient Sr = F ′Stp∂P p/∂z
to reproduce the DEM simulation.

It is however remarkable that the particle scale advection coefficient (4.6) has an
exponential profile. As the pressure gradient is constant and the segregation function F ′
has been taken constant equal to 1, the only variable parameter in the expression of the
advection coefficient is the viscosity ηp appearing in the Stokes number yielding Sr ∝ 1/ηp.
The inverse of the viscosity profile is plotted in figure 4.8c and the semi-logarithmic plot
shows that it is an exponential function of z. This stems from the definition of the particle
viscosity ηp = |τ pxz|/γ̇p being the ratio between the shear stress, which is linear, and the
shear rate, which is exponential, resulting in an exponential profile for the inverse of
the viscosity. Indeed, dividing an exponential profile by a linear function only modify
the characteristic length of the exponential (modification of the exponential slope in the
semi-logarithmic plot). Therefore the advection diffusion model based on the particle scale
forces is able to predict the exponential form of the advection coefficient. By analogy with
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(a) (b) (c)

Figure 4.8: Case Ns = 1.5. Semilog plots of (a) Advection coefficient profile Sr =
F ′Stp∂P p/∂z (full line) compared with the DEM advection coefficient Sr0I0.85 (dashed
line), (b) diffusion coefficient profile D = φsP

pStp/Φ for φs = 1 (full line) compared with
the DEM diffusion coefficient D0I

0.85 (dashed line) and (c) Inverse of the particle viscosity
profile computed from the shear rate fit (4.9) and the shear stress expression (4.10).
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hydrodynamics, the dependence of the advection coefficient to the inverse of the granular
viscosity indicates that the segregation problem can be interpreted as a free fall of the
small particles in a complex fluid having a spatially varying viscosity. The segregation
force, through F ′, plays the role of a forcing mechanism, and the surrounding equivalent
viscous fluid slows down the fall of the small particles. This highlights the fundamental
role of granular viscosity in the segregation process.

In the previous chapter, the exponential profile of the advection coefficient was the
result of a scaling with the inertial number (see figure 3.4b). The dependence with the
granular viscosity obtained with the particle scale analysis gives clues to understand the
origin of the inertial number scaling. Indeed, using the definition of the friction coefficient,
the granular viscosity can be written as

ηp = µP p

γ̇p
. (4.42)

The inertial number, with dimensionless variables, is

I = γ̇p√
P p
. (4.43)

Inverting equation (4.43) and introducing it into (4.42), it comes

1
ηp

= I

µ
√
P p
. (4.44)

The granular viscosity is therefore related to the inertial number. It means that the inter-
pretation of size segregation, as a free fall in an ambiant viscous fluid, is not incompatible
with the scaling with the inertial number highlighted by the dimensional analysis in the
introduction chapter and observed in chapter 3. The advection coefficient can therefore be
expressed as a function of the inertial number.

Concerning the diffusion coefficient, the previous chapter concluded that it should
scale with the inertial number with the same dependency as the advection coefficient, i.e.
D = D0I

0.85. The particle scale diffusion coefficient, D = φsP
pStp/Φ, is plotted for φs = 1

and compared with the DEM diffusion coefficient in figure 4.8b. The value is higher for
the particle scale coefficient. The new advection-diffusion is therefore more diffusive than
the DEM simulation explaining why the maximum value of the concentration profile is
lower with the advection-diffusion model (see figure 4.7b). The curves are parallel in the
semilog plot, indicating that the particle scale diffusion coefficient reproduces very well
the exponential profile with the same slope as the DEM coefficient. Again this can be
explained by the inverse of the particle viscosity dependency in the Stokes number which
is exponential (figure 4.8). Using expression (4.44), and introducing it in the expression of
the diffusion coefficient, a dependency with the inertial number can be derived

D = φs
Φ

√
P pI

6cµ . (4.45)
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Note that
√
P pI = γ̇p, making the diffusion coefficient proportional to the shear rate which

was observed by Cai et al. (2019) to control the diffusion of bidisperse mixtures. The
particle scale diffusion coefficient, D = φsP

pStp/Φ, also indicates a dependency with the
local small particle concentration φs, that was not observed in the DEM results. The
consequence of such a dependency is to increase the diffusion for large value of φs (in the
middle of the concentration profile) and to reduce it in the tails. It results in the shape of
concentration profile observed in figure 4.7b, very different from the DEM profile.

The present analysis has shown that the advection and diffusion coefficients (4.6),
expressed as a function of particle-scale forces and without any tuning, reproduce qualita-
tively the advection and diffusion coefficients of the DEM simulations, in particular the
exponential dependency with depth. The granular viscosity has been shown to have a
fundamental role in the granular process and induces a dependency of both coefficients
with the inertial number. Figure 4.8 shows that a depth dependency is missing in the
advection coefficient. The diffusion coefficient is too large and contains a dependency with
φs that was not observed in the DEM simulations. This φs dependency is at the origin of
the discrepencies on the shape of the concentration profile.

4.3.3 Missing dependencies in particle scale forces

As mentioned previously, the advection and diffusion coefficients (4.6) have been derived
from the particle scale segregation force of Guillard et al. (2016) and drag force of
Tripathi and Khakhar (2013). The segregation force was obtained from 2D idealized
DEM simulations with a simple forcing and the drag force from density segregation DEM
simulations. In addition, both forces were obtained in dense flows. One can therefore
expect these force formulations to miss some dependencies when considering the 3D case
with complex forcing studied herein in the quasi-static regime. The purpose of this section
is to use the DEM results to identify these missing dependencies and to propose new
empirical parametrisations for the particle-scale forces.

The missing dependencies probably lie in the segregation function F ′ and in the drag
coefficient c. Until now, both coefficients were considered constant, while Guillard et al.
(2016) observed F ′ to have a slight dependency with µ and Tripathi and Khakhar (2013)
suggested c to depend on the small particle concentration. Similarly to a hindrance
function in a fluid flow, one expects an increase of the effective solid drag force on a particle
with increasing concentration. Indeed, small particles more concentrated around a large
particle should obtruct it more easily and apply a stronger drag force. This should affect
the diffusion coefficient. In the following, a dependency with φs is assumed in the solid
drag coefficient as well as additional dependencies with the physical parameters in the
segregation function F ′ in order to correct the particle scale coefficients. These depen-
dencies are deduced by direct identification of the particle scale advection and diffusion
coefficients with the DEM results. The advection-diffusion model with these new empirical
formulations is then verified to indeed reproduce the DEM simulations.

The drag coefficient is supposed to depend on the small particle concentration c(φs) and
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F ′ is not assumed constant anymore. As shown in the previous section 4.3.2, the granular
viscosity can be expressed as a function of the inertial number (eq. 4.44). Replacing in
the expression of the advection and diffusion coefficients (4.6), they can also be written as
a function of the inertial number

Sr = IF ′

6c(φs)µ
√
P p

∂P p

∂z
, and D = φs

Φmax

√
P pI

6c(φs)µ
. (4.46)

Focusing first on the diffusion coefficient, figure 4.8b shows that the DEM and the particle
scale diffusion coefficients have the same vertical dependency. It means that, in this
particular configuration, √

P pI

µ
∝ I0.85, (4.47)

and fitting the curves of figure 4.8b, the ratio is estimated to
√
P pI/µI0.85 = C0 = 1.13.

Comparing the diffusion coefficient 4.46 with the DEM diffusion coefficient D = D0I
0.85, it

yields
φs

Φmax

C0

6c(φs)
= D0, (4.48)

and isolating the drag coefficient, it follows, from the identification of the model with the
DEM, a new formulation of c with a local small particle concentration dependency

c(φs) = C0

6ΦmaxD0
φs = 31φs. (4.49)

The consequence of such a linear scaling in small particle concentration is to remove the
φs dependency in the diffusion coefficient (4.46) that affects the shape of the concentration
profile in figure (4.7)b. Formulation (4.49) vanishes when φs tends to zero, corresponding
to the limit case where only one small particle is immersed in a bath of large particles.
In such a limit case, Tripathi and Khakhar (2013) found the drag coefficient to reach a
constant value c(φs → 0) = 3. In order to ensure a consistent formulation, the following
slightly modified formulation of the drag coefficient is proposed

c(φs) = 3 + 28φs, (4.50)

which tends to 3 when φs → 0 and to 31 when φs → 1.

Focusing now on the advection coefficient, both DEM and particle scale coefficients are
identified

IF ′

6c(φs)µ
√
P p
|∂P

p

∂z
| = Sr0I

0.85. (4.51)

In order to correct the discrepancies of the particle scale advection coefficient (see fig-
ure 4.7a), a new expression for F ′ is desired from the DEM results. Isolating F ′ in
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equation (4.51) provides a new formulation for the segregation function

F ′(µ, P p, φs, I) = 6Sr0c(φs)ρp
Φmax(ρp − ρf )

µ
√
P pI−0.15. (4.52)

As observed by Guillard et al. (2016), the segregation function is found here to depend
on the friction coefficient. This dependency is linear in our configuration while it was
more complex in Guillard et al. (2016) (eq. 4.8). Not surprisingly, when considering an
ensemble of small and large particles, the segregation function is also found to depend on
the small particle concentration. Additional dependencies with the granular pressure and
the inertial number, which were not observed by Guillard et al. (2016), are proposed for
F ′. These dependencies modify the depth dependency of the segregation function and
therefore of the advection coefficient and allow reproducing the DEM results.

The proposed dependencies for the segregation function and the drag coefficient are
based on fit on the DEM results and not on physical arguments. They should therefore be
verified, but the present study does not permit to discuss more the proposed functional
forms. However, this study allows us to draw two conclusions. First the dependence of the
advection and the diffusion coefficients with the inertial number to the power 0.85 is the
results of several combined effects, which all together scale with I0.85. Second, the form
proposed by Guillard et al. (2016) for F is not general and dependencies are missing to
reproduce size segregation of an ensemble of particles in the quasi-static region.

The advection-diffusion model with the new parametrisations of the segregation function
and the drag coefficient is now verified by comparison with DEM simulations. Different
initial number of layers of small particles are considered (Ns = 0.1, 1, 1.5 and 2). The
results are plotted in figure 4.9. Both the center of mass evolution with time and the
concentration profile at time t ∼ 60000 are very well reproduced by the advection diffusion
model. As expected, the new parametrisations are therefore consistent with the DEM
simulations. The solution with parametrisations from the literature (figure 4.7b) is also
plotted in dotted line for comparison. One can observe that, with the new parametrisations,
the shape of the concentration is significantly improved. As already mentioned, this is
allowed by the linear dependency of the drag coefficient on the small particle concentration,
which suppresses the φs dependency in the initial formulation of the diffusion coefficient
(equation (4.6)).

The new parametrisations also make it possible to retrieve the travelling wave solution
at constant thickness. Figure 4.10a plots the time evolution of the maximum value of
the small concentration for the same simulations than in figure 4.9. For each simulation,
the maximum value of φs is constant after an initial transient phase. This indicates that
the shape of the concentration profile does not evolve with time and the small particles
infiltrate as a self similar travelling wave with constant thickness. As demonstrated in
the previous chapter, this means that the Peclet number, defined as the ratio between
the advection and the diffusion coefficient, is constant. Indeed, both coefficients, with
new parametrisations, are plotted in figure 4.10b. Both coefficients have the same vertical
dependency and the Peclet Pe = Sr/D is therefore almost constant with z around Pe = 5
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Ns = 0.5 Ns = 1 Ns = 1.5 Ns = 2

Figure 4.9: Comparison, for different numbers of layers of small particles, between the
DEM simulations (dashed line) and the advection diffusion solution (full line) with new
formulations of the segregation function (4.52) and drag coefficient (4.49). Upper panel
corresponds to the time evolution of the small particles mass center and lower panel to the
concentration profile at time t ∼ 60000. For the case Ns = 1.5, the concentration profile
without parametrisation is plotted for comparison (dotted line).

(a) (b)

Figure 4.10: (a) Time evolution of the maximum value of the small particle concentration
for different value of Ns. Ns = 0.5: blue, Ns = 1: orange, Ns = 1.5: green and Ns = 2:
red. (b) Advection and diffusion profiles with the new parametrisations.
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(see inset of figure 4.10b). This is not surprizing. Indeed, the new parametrisations of the
segregation function F ′ and the drag coefficients c have been computed by indentification
with the DEM coefficients, which have both the same vertical dependency. In the previous
chapter, the value of the Peclet number was observed to vary with the number of small
particles Ns and this was interpreted as a global manisfestation of a φs dependency in the
diffusion coefficient. The new parametrisation of the diffusion coefficient does not have a
φs dependency anymore and therefore does not predict the increase of the Peclet number
with Ns. This would require more work on diffusion mechanisms in bidisperse mixtures in
order to determine the origin of this dependency of the diffusion coefficient with φs.

4.3.4 Influence of the size ratio
The influence of the size ratio has been studied in the previous chapter with DEM
simulations. The segregation velocity was observed to increase strongly with the size ratio
and a best fit on the results suggested a dependency G1(r) = 0.45

(
e(r−1)/0.63 − 1

)
for the

advection coefficient, where r = dl/ds is the size ratio. In their work, Guillard et al. (2016)
observed the segregation function F ′ to depend on the size ratio. The G1(r) dependency is
therefore introduced in the advection-diffusion model through the segregation function as

F ′(µ, P p, φs, I, r) = G1(r)6Sr0c(φs)ρp
Φ(ρp − ρf ) µ

√
P pI−0.15. (4.53)

This new parametrisation is tested against the DEM simulations for the size ratio r = 1.25,
1.5, 1.75, 2 and 2.25 in figure 4.11. The segregation dynamics is very well reproduced
by the advection diffusion models. In each case, the predicted center of mass temporal
evolution is almost superimposed with the DEM result. The predicted concentration
profiles at time t = 60000 are also at the same position as the DEM profiles. Adding
G1(r) in the segregation function allows the model to reproduce the increased segregation
velocity with the size ratio. This can be observed, at time t = 60000, by the lower
position of the concentration profiles for higher size ratios. Focusing on the shape of the
concentration profile, the width and maximum value are well reproduced for low size
ratios (r = 1.25, 1.5) but more discrepancies are observed for larger size ratio (r = 2,
2.25). In these cases, the width of the concentration profile is too small and the max-
imum value too high, compared with the DEM simulation, indicating that diffusion is
too weak in the advection-diffusion model. This means that the diffusion coefficient
should probably contain a size ratio dependency. This would need more work on diffusion
of bidisperse mixtures but it seems reasonable that diffusion should depend on the size ratio.

While Guillard et al. (2016) observed F ′ to reach a maximum for r = 2, the function G1
measured on DEM simulations increases exponentially with r and does not exhibit such a
maximum. Two possible origins of this difference are put forward. As already discussed in
the previous chapter (section 3.1.5) there exists an asymmetry in the segregation process
when considering the rise of a large intruder or the infiltration of a small particle (Van
der Vaart et al., 2015). This asymmetry is here highlighted when comparing the size ratio
dependency in F ′ observed by Guillard et al. (2016) and the G1(r) dependency measured
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r = 1.25 r = 1.5 r = 1.75 r = 2 r = 2.25

Figure 4.11: Comparison,for different values of the size ratio, between the DEM simulations
(dashed line) and advection diffusion solution (full line) with new formulations of the
segregation function (4.52) and drag coefficient (4.49) and for Ns = 1. Upper panel
corresponds to the time evolution of the small particles mass center and lower panel to
the concentration profile at time t ∼ 60000.

in this study based on the DEM results.
Another possibility is that the measured dependency G1(r) would be a combination of

different size ratio dependencies. The analysis above indicates that the diffusion coefficient
D = φsP

pStp/Φ depends on the size ratio. This dependency may lie in the drag coefficient,
with a size ratio dependency in the Stokes number Stp(r). The advection coefficient
Sr = F ′Spt ∂P p/∂z contains the product of the segregation function F ′ and the Stokes
number Spt . The measured G1 functional form could therefore be the combination of
these two dependencies. This is however purely speculative and further work is needed to
describe these potential effects.

4.4 Conclusion
The DEM results obtained in the previous chapter have been analysed in the framework of
the new advection-diffusion model proposed by .Theoriginalityofthismodelisthatitisderivedfromparticlescaleforces(segregationanddragforces), yieldingphysically−
basedparametrisationsfortheadvectionanddiffusioncoefficients.Thisderivationmakesitpossibletoidentifythedependenciesofthesecoefficientswiththelocalphysicalparametersoftheflowsuchasthesmallparticleconcentration, themixturegranularpressureanditsgradient, thegranularStokesnumberandthesegregationparameter.

A numerical method has been presented to solve the model. It can be used for any
formulation of the advection and diffusion coefficients. Forcing only with rheological
properties of the mixture bed (shear rate and bed stresses) and without any tuning, the
model reproduces the main properties of the DEM results, in particular the logarithmic
descent of the small particle layer with time. It is demonstrated that the granular vis-
cosity plays a major role in the segregation process and implies a dependency of both
coefficients with the inertial number as observed in the previous chapter. Using the DEM
results, improved parametrisations for the advection and diffusion coefficients have been
proposed. The segregation function of Guillard et al. (2016) is shown to depend on small
particle concentration, pressure, inertial number and size ratio and the drag coefficient
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of Tripathi and Khakhar (2013) to depend on the small particle concentration and size ratio.

This work represents a major step in the upscaling process toward continuum modelling
of grain size sorting during bedload transport. The macroscopic segregation mechanisms
observed in the previous chapter have been explained by interactions at the particle scale.
The derivation of the model is not restricted to the current bedload configuration and
could be applied to other bidisperse granular flow regimes and configurations.

Some additional dependencies have been proposed in the parameters of the particle
scale forces in order to reproduce quantitatively the DEM results in the quasi-static regime.
These dependencies should now be verified at the particle scale. Reverting to the study
of a large intruder in a small particle bed, the segregation force and drag force should
be isolated in order to study the dependencies of the segregation function F ′ and of the
drag coefficient c. It would be interesting to verify these dependencies in the quasi-static
regime, in the dense regime, and in other types of flow (Bagnold flow, dry heap flow. . . ).
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Chapter 5

Sediment mobility of bi-disperse
mixtures during bedload transport

In previous chapters, the mechanisms responsible for size segregation and its modelling
have been studied in quasi-static granular flows. This allowed us to characterise the
parameters controlling the segregation velocity and to better understand the physical
mechanisms at stake. Until here, the number of small particles were assumed to be suffi-
ciently small to infiltrate the large particle bed without modification of the bulk properties.
However, in practice, sediment beds are often found already segregated and the discussion
in introduction shows that the presence of smaller particles may strongly influence the
bed mobility. In this chapter, we therefore investigate the consequences of size segregation
on sediment transport fluxes. As most of the transport is located in the bedload layer,
the results presented in this chapter mainly focus on the dense granular flow regime. This
work has led to the publication of a scientific paper in the journal Physical Review Fluid
(Chassagne et al., 2020a).

In most classical bedload transport laws, the definitions of the Shields number and
Einstein parameter are based on the surface composition of the bed, via the median
diameter d50 or d84 (84% of grains are smaller than d84), and do not account for the depth
structure of the grain size distribution. The literature review presented in the introduction
however highlights the influence of the depth structure on bed mobility. Indeed, in many
studies, the presence of small particles at the base are observed to lubricate and increase
the mobility of the whole flow. In bedload transport, segregated small particles, buried
below the bed surface are therefore expected to affect the mobility of the overlying large
particles. However, there is still no clear understanding of the responsible mechanisms for
this enhanced mobility.

In this chapter, the mobility of bidispersed segregated beds is studied from a granular
perspective, considering coupled fluid-DEM simulations of turbulent bedload transport.
The analysis will be performed in the framework of the µ(I) rheology (GDR MiDi, 2004;
Jop et al., 2006; Forterre and Pouliquen, 2008) extended for the bedload configuration by
Maurin et al. (2016) as described in section 2.2.3.
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The numerical setup is presented in section 5.1. The bed mobility is explored in
section 5.2. Results are analysed within the µ(I) rheology framework in section 5.3 and
the increased mobility is shown to be directly related to rheological consequences. Based
on rheological arguments, a simple predictive model for the additional transport is derived
and compared with DEM simulations in section 5.4. Finally the results are discussed in
section 5.5.

5.1 Numerical setup

Figure 5.1: A typical numerical setup. Initially Nl layers of large particles (dl = 6 mm)
are deposited by gravity on Ns layers of small particles (ds = 3 mm). The fluid of depth
hw flows by gravity due to the slope α and entrains particles.

The numerical setup is presented on figure 5.1. It is close to the one presented in
chapter 3 but the initial state is already segregated with the large particles on top of the
small ones. Initially, Ns layers of small particles of diameter ds = 3 mm and Nl layers of
large particles of diameter dl = 6 mm are deposited by gravity over a rough fixed bed made
of small particles. The height of the bed at rest is thus defined by H = Nsds+Nldl. The size
of the 3-D domain is 30ds× 30ds in the horizontal plane in order to have converged average
values (Maurin et al., 2015) and is periodic in the streamwise and spanwise direction. The
bed slope is fixed to 10% (α = 5.7◦), representative of mountain streams. As this study
mainly focuses on cases where the bed surface is composed of only large particles, the
Shields number definition is based on the large particle diameter as θ = τf/((ρp − ρf )gdl),
where τf = ρfghwsin(α) is the fluid bed shear stress, with hw the water depth. Only the
macroscopic definition of the Shields number is used in this chapter (see discussion about
the Shields number definition in section 2.2). Simulations were performed for Shields
numbers ranging from 0.1 to 1, i.e. from a few isolated particles transported at the bed
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(a) (b) (c)

Figure 5.2: Illustration of some considered configurations. (a) Nl = 2, (b) Nl = 4, (c)
monidisperse case

surface to a ten grain thick mobile layer. For each value of the Shields number, several
configurations were considered with a varying number of layers of large particles Nl = 1, 2,
3 and 4 which will be compared with a monodisperse large particle configuration considered
as a reference case (see figure 5.2). In each case Ns varies in order to keep the bed height
H constant equal to H = 8.5dl for θ ≤ 0.5, H = 10.5dl for 0.5 < θ ≤ 0.7 and H = 16.5dl
for larger Shields numbers. This increase in the bed thickness is made in order to ensure
an erodible bed bottom boundary condition. As we focus on transport, in this chapter,
the origin of the vertical axis is set at the top of the particle bed at rest. The interface
position, describing the transition between large and small particles, is therefore defined
geometrically as zi = −Nldl.

At the beginning of each simulation, the fluid flows by gravity and sets particles into
motion. After approximately 20 seconds, a dynamical equilibrium is achieved between the
fluid flow and the transport of sediment. The results are then time-averaged over a 280s
time period to ensure converged results. A mixed layer forms at the interface between small
and large particles resulting from an equilibrium between diffusion and size segregation.
The present study focuses on the relation between the fluid forcing and sediment transport
once the steady state is achieved. Similar to the Shields number, the Einstein parameter is
based on the large particle diameter as Q∗s = Qs/

(
(ρp/ρf − 1)gd3

l

)0.5
, where Qs =

∫
Φvpxdz

is the transport rate per unit width in m2/s, and vpx is the bulk streamwise velocity. The
horizontal averaged volume fraction of small (resp. large) particles is defined as Φs (resp.
Φl). By definition, the two volume fractions sum to Φ the total granular volume fraction,

Φs + Φl = Φ. (5.1)

5.2 Enhanced mobility due to bidispersity
In figure 5.3a is plotted the steady state dimensionless solid transport rate as a function
of the Shields number. In all configurations, the dimensionless transport rate increases
with the Shields number. The transport rate is remarkably stronger in all bidisperse
configurations with respect to the monodisperse case, evidencing enhanced particle mobil-
ity. Figure 5.3b shows the bidisperse transport relative to monodisperse configurations,
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(a) (b)

(c)

Figure 5.3: (a) Solid transport rate as a function of the Shields number for all simulations.
(b) Increased transport rate in percentage compared with the monodisperse configuration.
(c) Log-log plot of the Solid transport rate as a function of the Shields number.

increasing up to 50%. The increase of transport is almost linear with the Shields number
and is stronger when the number of layers of large particles Nl is small. Indeed, for a lower
Nl, small particles are closer to the surface (see figure 5.2) and are more likely to influence
transport. This indicates that the depth of the interface between large and small particles,
zi, plays a role in the transport efficiency. At low Shields numbers and for Nl = 4, almost
no increase of transport is observed. In that case, the interface position is too deep to
affect the bed mobility, and the bidisperse bed behaves as if it were monodisperse. Overall,
without modification of the fluid forcing, a substantial increase of transport is observed
just by changing the particle size in the bed depth profile.

Figure 5.3c shows the dimensionless transport rate as a function of the Shields number
in a log-log plot (same data as in figure 5.3a). The linearity of the curves shows that a
power law relates both parameters in all configurations. The value of the exponent is not
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sensitive to the bed composition, consistent with experimental observations of Houssais
and Lajeunesse (2012) of bimodal beds, and a best fit on the curves yields a mean exponent
of 2.20. The value of the prefactor is however higher in bidisperse configurations than in
the monodisperse one, indicating an increase of transport in these configurations. The
measured value of the exponent is larger than the 3/2 exponent in classical transport laws
(Meyer-Peter and Müller, 1948; Einstein, 1950). This is however consistent with other
simulations of intense bedload transport (Maurin et al., 2018; Chauchat, 2018) measuring
an exponent around two. It is also consistent with the semi-empirical transport law
proposed by Pähtz and Durán (2020), which unifies different transport regimes, predicting
a 3/2 exponent for low transport and a 2 exponent for intense transport.

(a) θ ∼ 0.2, Nl = 4 (b) θ ∼ 0.45, Nl = 2 (c) θ ∼ 0.55, Nl = 1

Figure 5.4: Transport profiles of each class of particles for different configurations and
Shields numbers. The transport profile of the large particles in the monodisperse case for
the same Shields number is also plotted for comparison.

To expand the transport description, the local transport rate of each class of particle is
defined as qis(z) = Φi(z)vpx(z), where Φi(z) is the volume fraction of particle class i = l, s.
Figure 5.4 shows the local transport rate depth profile of each class of particles for different
typical configurations. The transport rate of large particles in the monodisperse case is
also plotted in black dashed line for comparison. For θ ∼ 0.2 and Nl = 4 (figure 5.4a),
almost no increase of transport (∼ 4%) is observed, and the small particles are barely
transported. Increasing the Shields number, figure 5.4b shows that the small particles are
transported but remain buried in the bed. When comparing the transport rate profile
of small particles with the monodisperse configuration (dashed line), the small particle
transport is higher than the large one at the same depth. The same observation is true
for the overlying large particles. The total transport, being the sum of both the small
and large particle transport, is therefore much higher in the bidisperse case than in the
monodisperse case. For θ ∼ 0.55 and Nl = 1 (figure 5.4c) the transport of small particles
is even stronger and small particles are present up to the bed surface, while they remained
buried in the previous configuration (figure 5.4b). It is therefore possible to draw two
main conclusions. First, the observed increase of transport is a direct consequence of the
mobility of the small particles. Second, even the large particle transport is significantly
higher than in the monodisperse case.
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Two types of phenomenology are observed in the results. On the one hand small
and large particles remain well separated, with small particles buried deep in the bed
(figure 5.4a, b). On the other hand, small and large particles are mixed at the surface
(figure 5.4c). The width of the transition between small and large particles depends on the
relative importance of segregation over diffusion, the ratio of which has been defined as
the Peclet number Pe in section 3. If diffusion is strong enough compared to segregation,
small buried particles can reach the surface. To characterise the surface state, the surface
diameter is computed as the mean particle diameter above z = 0 as

dsurf =
∫+∞

0 Φs(z)ds + Φl(z)dldz∫+∞
0 Φs(z) + Φl(z)dz

. (5.2)

The non-dimensional surface diameter is set between 0 (only small particles at surface)
and 1 (only large particles) with the following transformation

d̄surf = dsurf − ds
dl − ds

. (5.3)

Figure 5.5 shows in scatter plot the value of the surface diameter as a function of the
Shields number and the number of layers of large particles. The domain is clearly separated
into two parts deliminated by the dashed line. Above the dashed line, the bed surface is
only composed of large particles while below it is composed of a mixture of both small
and large particles. For a given value Nl, there exists a transition Shields number θt(Nl)
which separates a monodisperse bed surface from a bidisperse one. For θ < θt, diffusion is
weak compared to segregation, while for θ > θt it is strong enough to move small particles
up to the bed surface. This therefore indicates that the Peclet number Pe depends on the
Shields number. In addition θt increases with Nl. Indeed, when Nl increases, the transition
depth zi between small and large particles is deeper in the bed and diffusion needs to be
even stronger for the small particles to reach the surface. For Nl = 4 the surface is always
composed of large particles. There is no doubt that increasing again the Shields number
will eventually bring small particles at the surface. Two simulations for Nl = 0.5 have also
been plotted for illustration. By definition in these cases, the bed surface is necessarily
composed of a mixture of large and small particles.

In cases where the surface is composed of a mixture of small and large particles (below
the dashed line), the increased transport can be attributed to a fluid effect. Indeed, at
constant fluid shear stress, the ratio between the drag force contribution and the buoyant
weight is inversely proportional to the diameter, so that the transport rate is a priori
higher for a mixture surface state. In cases where the small and large particles are well
separated (above the dashed line), the increased transport rate cannot be attributed to a
fluid effect. Indeed, it has been shown in section 2.2.4 that for z ≤ 0 the fluid shear stress
was already completely transmitted to the granular phase. The interface depth between
large and small particles being always below z = 0, the increased transport is necessarily
due to a granular process. In the next section, the study focuses only on the configurations
where small and large particles are well separated and where the bed surface is composed
only of large particles. The granular process responsible for the increase of mobility is
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Figure 5.5: Mean surface diameter as a function of the Shields number and the large
particle number of layers. The dashed line shows the transition between a large particle
surface state and a mixture surface state.

investigated through a mechanical analysis of the granular bed properties.

5.3 Interpretation as a granular process
The granular stress tensor σp can be computed from the DEM. The procedure has been
described in section 2.1.4 and it was demonstrated that in this configuration, the granular
stress can be described by only two scalar parameters, which are the granular pressure
P p = σpzz and the shear stress τ pxz = σpxz. For readability, the shear stress will be noted τ p
in the following.

Figure 5.6a compares, for θ ∼ 0.45, the monodisperse and the bidisperse (Nl = 2)
components of the stress tensor. The pressure and the shear stress exhibit the same behavior
in the monodisperse and bidisperse configurations. For the same forcing, the response of the
bed in terms of granular stresses is therefore the same whatever the constitution of the bed.
However, the transport profiles (figure 5.4b) show that the bidisperse bed is more mobile
than the monodisperse one. This means that the dynamical response is dependent on the
bed composition. This is analysed within the framework of the µ(I) rheology, relating the
friction coefficient µ = τ p/P p to the inertial number I. The diameter to consider in the
expression of the inertial number (2.29) is the local volume-averaged diameter (Rognon
et al., 2007; Tripathi and Khakhar, 2011b) d = φsds + φldl (which simplifies to d = dl in
the monodisperse case). Following GDR MiDi (2004), the rheology of dense granular flows
can be seen as follows. If µ ≤ µc, where µc is the static friction coefficient, no motion
is observed and I = 0. If µ > µc, there exists a one to one correspondence between the
friction cofficient µ and the inertial number I.

The friction coefficient is plotted in figure 5.6b and, as expected from the similarity
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of the granular stress profiles (figure 5.6a), it is the same in the bidisperse and the
monodisperse configuration. As a consequence, the inertial number profiles should be
the same in both configurations and that is indeed the case as observed in figure 5.6c.
The dashed line ( ), defines a depth z1 such that µ(z1) = µc, the theoretical transition
between static and dense granular flows. The dashed-dotted line ( ) shows the interface
depth zi between small and large particles.

Figure 5.6d shows the bulk particle velocity for both configurations. For µ < µc or
equivalently z < z1, the inertial number and the velocity are indeed small but not exactly
zero. This is due to non-local effects, that the µ(I) rheology is not able to capture (Kamrin
and Koval, 2012; Bouzid et al., 2013). It corresponds to a quasi-static flow, or creeping
regime, studied in chapter 3, in which the velocity is exponentially decreasing into the
bed. In order to understand the increased mobility in the bidisperse configuration, the
quasi-static regime has a negligible impact in terms of transport and is not considered
in this study. For z > z1, as the friction coefficient is similar in both configurations (see
figure 5.6b), the inertial number is also supposed to be the same

Ib = Im, (5.4)

where subscript b (resp. m) denotes the bidisperse (resp. monodisperse) configuration.
For z1 < z < zi, the particle diameter in the bidisperse simulation is db ∼ ds, and dm = dl
for the monodispserse case. Equation 5.4 becomes

dsγ̇b√
P p/ρp

∼ dlγ̇m√
P p/ρp

. (5.5)

The granular pressure being the same in both configurations (see figure 5.6a), it gives

γ̇b ∼
dl
ds
γ̇m. (5.6)

Integrating equation 5.6 from z1 to z ≤ zi, and assuming that the velocities are zero in z1,
yields

vpb (z) ∼ dl
ds
vpm(z), (5.7)

and therefore the velocity is higher in the bidisperse case than in the monodisperse case.
Figure 5.6d shows indeed that, for z1 ≤ z ≤ zi (between the two dashed lines), the velocity
is higher in the bidisperse configuration than in the monodisperse one. It means that for
the same granular stress state, small particles are transported more easily than larger
particles. This is a direct consequence of the µ(I) rheology.

For z > zi, the particle diameter is dl in both configurations and equation (5.5) simplifies
to

γ̇b ∼ γ̇m, (5.8)

and by integration from depth zi to z,

vpb (z) ∼ vpm(z) + (vpb (zi)− vpm(zi)) ∼ vpm(z) + ∆v, (5.9)

Rémi Chassagne 92



5.3. Interpretation as a granular process

(a) (b)

(c) (d)

Figure 5.6: Comparison of the monodisperse (dotted line) and the bidisperse Nl = 2
(full line) configuration for θ ∼ 0.45. (a) Pressure and shear stress profiles, (b) friction
coefficient profiles, (c) inertial number profiles and (d) velocity profiles. The dotted green
line corresponds to a translation of ∆v = 0.383

√
gdl of the monodisperse velocity profile

(blue dotted line). The horizontal line ( ) separates the quasi-static regime from the
flowing regime. The horizontal line ( ) shows the transition from small to large particles
in the bidisperse configuration.
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meaning that the particle velocity profile in the bidisperse case is just a translation of the
velocity profile in the monodisperse case. In figure 5.6d is plotted, in the upper part of the
bed, vpm(z) + ∆v, with ∆v = 0.383

√
gdl measured in the DEM simulation. The obtained

curve is completely superimposed on the velocity profile in the bidisperse configuration.
In both configurations, the large particles at the top have exactly the same behaviour.

The proposed granular analysis explains the observation made previously in figure 5.4,
in which a layer of small particles was observed to be transported faster than larger
particles at the same depth. Small particles consequentely play the role of a conveyor belt
for the overlying particles and ∆v represents a slip velocity. It additionally shows that the
enhanced mobility is not a roughness effect, due to the reduction of roughness by smaller
particles below the large particle layer. Indeed, if particles do not move at the interface,
∆v = vpb (zi)− vpm(zi) is zero and no enhanced mobility is observed, as in figure 5.4a. The
fluid origin for the increased mobility can be discarded because the fluid shear stress is
already fully transferred to the granular shear stress below z = 0. This analysis confirms
that the enhanced mobility originates in the granular rheological properties of bidisperse
beds.

This rheological analysis gives a qualitative understanding of the granular bed behaviour
in the bidisperse configuration. To be more quantitative, the previous conclusions are used
in order to predict analytically the additional transport in the bidisperse case.

5.4 A predictive model for the additional transport

In this section, a simple model is derived, the purpose of which is to predict the additional
transport observed in the bidisperse case. To obtain a predictive model, the additional
transport will be expressed as a function of the monodisperse quantities (Φm, vpm, etc...).
The configuration is ideally simplified as a two layer problem in which small and large
particles are completely separated at the interface depth zi. The mixed layer of small and
large particles, observed in the bidisperse DEM simulations, is here neglected. Therefore
it is assumed that the mixture concentration profiles are identical in the bidisperse and in
the monodisperse configuration, ie. Φm(z) = Φb(z).

The transport in the bidisperse case is expressed as,

Qb =
∫ +∞

−∞
vpb (z)Φb(z)dz. (5.10)

Below the interface between large and small particle, i.e. z ≤ zi, the previous analysis has
shown that vpb (z) = dl/dsv

p
m(z), while for z > zi, vpb (z) = vpm(z)+∆v. Splitting the integral

into two parts, below and above zi, placing the velocity expression into equation (5.10)
and recalling that Φb(z) = Φl(z) + Φs(z) is assumed to be equal to Φm(z), one obtains

Qb =
∫ zi

−∞

dl
ds
vpm(z)Φm(z)dz +

∫ +∞

zi
(vpm(z) + ∆v)Φm(z)dz. (5.11)
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Distributing the second term and combining it with the first term,

Qb = Qm + ( dl
ds
− 1)

∫ zi

−∞
vpm(z)Φm(z)dz +

∫ +∞

zi
∆vΦm(z)dz. (5.12)

where Qm =
∫+∞
−∞ vpm(z)Φm(z)dz is the monodisperse transport rate. Recalling that ∆v

is independent of z, the additional transport due to the presence of small particles can
therefore be expressed as

∆Q = ( dl
ds
− 1)

∫ zi

−∞
vpm(z)Φm(z)dz + ∆v

∫ +∞

zi
Φm(z)dz = ∆Q1 + ∆Q2. (5.13)

The term ∆Q1 represents the additional transport below the interface of the small particles,
more mobile than larger particles. The term ∆Q2 represents the additional transport
of the large particles at the surface due to the conveyor belt effect. Note that in the
monodisperse limit (i.e. ds = dl), both terms vanish. This is obvious for ∆Q1. For ∆Q2,
it is ∆v = vpb − vpm, which cancels in the monodisperse limit (vpb = vpm). Note that the
additional transport in the bidisperse configuration (equation (5.13)) is expressed only as
a function of monodisperse variables.

In order to verify that the model is consistent with the transport mechanisms at
play, equation (5.13) is first tested using DEM monodisperse simulations as inputs. The
additional transport terms ∆Q1 and ∆Q2 are computed using the DEM velocity and
concentration profiles vpm, Φm and estimating the slip velocity ∆v directly on the DEM
simulations. The predicted dimensionless additional transport rates are plotted in figure 5.7.
The additional transport in the bidisperse case is very well predicted by equation (5.13)
for all values of Shields number and for all numbers of layers of large particles. The small
errors obtained with equation (5.13) show that the model contains the significant physical
ingredients acting in this transport process.

In practice, the concentration and velocity profiles, as well as the slip velocity, are
difficult to obtain, and computing the additional transport due to the presence of small
particles is not straightforward. In the following, a method to compute the two additional
transport terms is proposed. The particles are assumed to be transported without dilatation
of the bed. The concentration is therefore hypothesized constant and equal to Φmax = 0.61
in the bed with the top of the bed exactly at z = 0 (see figure 5.8a) as

Φm(z) =
{

Φmax = 0.61, z ≤ 0
0, z > 0 (5.14)

To compute the ∆Q1 additional small particle transport term, the monodisperse
velocity profile for z ≤ zi needs to be estimated. It can be derived using the µ(I) rheology
(equation 2.30). The stress state (normal and shear stresses) of the granular bed needs to
be computed. Based on the two-phase volume-averaged equations for turbulent bedload
transport Jackson (2000); Chauchat (2018) and for the idealized step volume fraction
profile (equation 5.14), the granular pressure and shear stress profiles were computed
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(a) (b)

Figure 5.7: (a) Dimensionless additional transport measured in the DEM simulations (full
symbols) and predicted by equation (5.13) (empty symbols), for different values of the
Shields number and Nl. Only cases for which the surface is composed of large particles
only are presented for readability. (b) Error between the total transport predicted by
equation (5.12) and the measured one with the DEM simulations.

analytically in section 2.2.4. It yielded

P p(z) =
(
ρp − ρf

)
g cos(α)Φmaxz, (5.15)

τ p = τb +
(
ρf + (ρp − ρf )Φmax

)
g sin(α)z, (5.16)

where τb = ρfghw sin(α) is the fluid bed shear stress. The friction coefficient can be
computed analytically as µ = τ p/P p with these profiles. Inverting the µ(I) rheology
(equation 2.30), replacing the inertial number I by its expression (equation 2.29) with the
large particle diameter and integrating, a velocity profile is obtained

vpm(z) =


0, µ(z) < µc,∫ z

z1

√P p(ζ)
ρp

I0

dl

µ(ζ)− µc
µ2 − µ(ζ)

 dζ, µc ≤ µ(z) < µ2,
(5.17)

where µc = 0.35, µ2 = 0.97 and I0 = 0.69 are the set of parameters proposed by Maurin
et al. (2016) for bedload transport. The integral can be computed numerically with the
analytical expression of the granular pressure and of the friction coefficient and without
any data from the DEM simulations.

To verify that this derivation is consistent with the DEM simulations, figure 5.8 com-
pares, for the monodisperse simulation at θ ∼ 0.45, (a) the idealized concentration, (b)
the pressure and shear stress, (c) the friction coefficient and (d) the velocity profile with
the DEM results. The idealized step concentration profile obviously does not reproduce
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(a) (b)

(c) (d)

Figure 5.8: Comparison between idealized (dotted lines) and DEM profiles (full lines)
in the monodisperse configuration for θ ∼ 0.45. (a) Concentration profiles, (b) granular
pressure and shear stress profiles, (c) friction coefficient profiles and (d) velocity profiles.
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the dilatation of the bed at the surface. As a result, the pressure and shear stresses
correspond with the DEM results in most part of the bed but differ close to the surface.
Similarly, discrepancies near the bed surface appear for the friction coefficient and the
velocity profiles. However, in the expression of ∆Q1, the velocity and concentration profiles
are needed only for z ≤ zi, where the idealized concentration and stresses agree very well
with the DEM ones. Concerning the velocity profile (figure 5.8d), the µ(I) rheology can
not predict the quasi-static regime as already mentioned (see inset of figure 5.8d). The
velocity profile is well predicted in the dense regime but the rheology fails to predict the
velocity in the upper part of the bed for µ ≥ µ2, which corresponds to a more dilute flow
regime. In order to use the predictive model, it is therefore necessary that µ(zi) < µ2,
which is the case in all our simulations and should be the case in classical bedload transport
configurations. Otherwise, it would mean that small particles are in the dilute flow regime
and would be present at the bed surface, configuration which has already been discarded.
With the velocity profile (5.17), it is now possible to compute the first additional transport
term ∆Q1 without any data from the DEM simulations.

To compute the second additional transport term ∆Q2, both the ∆v slip velocity and
the

∫+∞
zi

Φm(z)dz term need to be estimated. The second term represents the amount of
large particles slipping above the small particles. With the idealized concentration profile,
it can be directly computed as ∫ +∞

zi
Φm(z)dz = ΦmaxNldl. (5.18)

Lastly, the slip velocity remains to be estimated. By definition, for z ≥ zi, ∆v =
vpb (z)− vpm(z). It is therefore valid in z = zi, where vpb (zi) = dl/dsv

p
m(zi). The slip velocity

is therefore finally given by

∆v =
(
dl
ds
− 1

)
vpm(zi), (5.19)

with vpm(zi) which can be computed from the velocity profile equation (5.17) derived
previously. All additional transport terms can now be computed and the total additional
transport can be expressed as

∆Q = ( dl
ds
− 1)Φmax

(∫ zi

0
vpm(z)dz +Nldlv

p
m(zi)

)
, (5.20)

with vpm(z) given by equation (5.17). This additional transport term can be computed
without any DEM data and only uses the µ(I) rheology.

Equation (5.20) is tested and compared with the additional transport rate directly
measured with the DEM simulations in figure 5.9. The model predicts well the additional
transport with an error of less than 10% in most cases and a maximum error around 20%.
The error is generally smaller when Nl is larger. For each configuration, there is a region
where the error is maximum. The Shields number at which the maximum is reached seems
to depend on the large particle number of layers (see figure 5.9b). The results are discussed
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(a) (b)

Figure 5.9: (a) Dimensionless additional transport in the bidisperse case measured with
the DEM simulations (full symbols) or computed with equation (5.20) (empty symbols),
for different values of Shields number and Nl. Only cases for which the surface is composed
of large particles only are presented for readability. (b) Error between the total bidisperse
transport predicted by equation (5.20) and the measured one with the DEM simulations.

and interpreted in the next section.

5.5 Discussion and conclusion
This study has shown that the additional transport evidenced in an inversely graded
bidispersed bed is a granular process. In a granular flow, small particles being more mobile
than larger ones, they play the role of a conveyor belt for the overlying large particles.
Assuming that large and small particles are completely separated and are transported
without dilatation of the bed, a model for the enhanced transport has been derived based
on rheological arguments. The results have shown that our model contains the significant
physical ingredients of the transport process and is able to predict acccurately the addi-
tional transport due to bidispersity in bedload transport. The developed model allows
improving upon classical transport laws by taking into account not only the classical bed
surface state, but the entire mobile granular bed structure.

This model can also be used as a tool to interpret the different transport mechanisms
observed in this bidisperse granular flow configuration. The different regimes observed
are summarized in figure 5.10. The map has been built from the regions of validity of the
model, the blue squares showing regions where the error between the model prediction and
the DEM is less than 10% while the brown ones show regions where the error is higher.
This criterion enables us to define four different regimes of granular flows, corresponding
to different granular depth structures and flowing mechanisms. Regime 1 corresponds to
cases where small and large particles are well mixed, with small particles present at the
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Figure 5.10: Mapping of the four different observed phenomenologies in the bidisperse
transport process. Each regime is illustrated with a typical simulation picture where the
creeping flow has been shaded in gray. Results are plotted in colored squares and split
into two classes : blue (predicted transport error less than 10%) and brown (larger error).

bed surface. In those cases, the additional transport is a combination of granular and fluid
processes. Indeed, smaller particles at the surface are more easily entrained by the fluid
flow and the mixture of small and large particles can affect the flowing properties of the
granular mobile layer. Regime 2 corresponds to the domain of validity of the proposed
model, where all assumptions are verified. In this regime, the fluid-driven large particles
entrain the small ones, which create a so-called conveyor belt effect, due to their higher
mobility. The transition depth between small and large particles is here located in the
dense granular flow region. When the transition is located deeper in the bed, near or
inside the creeping flow region, the µ(I) rheology is no longer valid and the model predicts
erroneously a zero velocity inside the small particle layer (see inset figure 5.8d). This third
regime therefore leads to small (< 25%) but non negligible errors in the model predictions,
due to the absence of modelled slip velocity and additional transport. This indicates that
the quasi-static part of the bed may play a non neglible role in the sediment transport
process (Houssais et al., 2015; Ferdowsi et al., 2017). Regime 4 corresponds to cases where
the transition depth is very deep in the bed and no additional transport due to the presence
of small particles is observed in the DEM simulations or predicted by our model. The
bidisperse nature of the bed can be neglected in this regime.

The model and the phenomenology map have been derived considering assumptions a
priori valid for any granular flow on a pile. Therefore, this analysis should remain valid
for other flow configurations of bidisperse mixtures with larger particles on top of smaller
ones. In addition, the mechanisms described herein rely only on rheological arguments
and one can expect the analysis to hold for any granular flow. Indeed, when submitted
to the same stress, small particles are more mobile than larger particles and the effect
observed for polydisperse granular collapses (Linares-Guerrero et al., 2007; Lai et al., 2017)
or granular avalanches, for example, can be interpreted similarly. During the collapse, the
small particles segregate and form a basal flowing layer, setting up a conveyor belt effect
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(a) (b)

Figure 5.11: (a) Additional transport rate predicted by equation (5.20) (orange crosses)
and computed from the DEM simulations (blue squares) for different size ratios at θ ∼ 0.45
and Nl = 2. (b) Non-dimensional surface diameter in the DEM simulations as defined in
equation (5.3) as a function of the size ratio. Cases r = 2.5 and r = 4 are illustrated with
a picture from the DEM simulation.

and increasing the runout distance of the collapse.

The results obtained in this study can be put into perspective by considering the
dependency of the results on the size ratio. Varying the size ratio between r = 1.5 and
r = 4 for a given configuration (θ = 0.45, Nl = 2), one can evidence that the transport
predicted by the model is valid up to r = 2.5 (see figure 5.11a). For a larger size ratio,
the increased transport observed in the DEM is much higher than predicted by the model.
This effect seems to be related to a drastic change in the granular flow structure. Indeed,
the mean surface particle diameter, representative of the mixing of small and large particles
changes drastically between a size ratio of r = 3 and r = 4 (see figure 5.11b). This indicates
that diffusion remixing increases significantly, and can be related to the onset of inverse
segregation as observed in this range of size ratio by Thomas (2000). This link between
diffusion and inverse size segregation challenges our understanding of size segregation and
deserves future work.
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Chapter 6

Conclusions and perspectives

The present PhD study has focused on the analysis of gravity-driven size segregation
in bedload transport. The aim was to improve our understanding of the mechanisms
controlling and responsible for size segregation in this particularly complex configuration,
and to study its impact on the sediment transport rate. This PhD work has addressed
different size segregation problems in bedload transport, with a panel of complementary
approaches and in different configurations. Size segregation has been studied in both the
quasi-static and the dense regimes, and analysed with discrete and continuum models.
The segregation dynamics and its impacts on sediment transport were investigated. This
study therefore gives an overview of size segregation during bedload transport and opens
new challenging perspectives.

6.1 Conclusions
For this study, the coupled fluid-DEM model developed by Maurin et al. (2015) has been
adapted to bidisperse configurations. It allowed us to study the segregation mechanisms
in bedload transport in two different configurations.

In the first one, the mechanisms controlling the infiltration of small particles in a bed
made of large particles have been investigated in the quasi-static regime. Small particles
have been observed to infiltrate the bed all together, as a travelling wave, forming a layer
of constant thickness. This segregation dynamics has been shown to be controlled by the
inertial number to the power 0.85 and by the local small particle concentration, confirming
and extending results observed in other dense granular flow configurations (Fry et al., 2018;
Dolgunin and Ukolov, 1995; Jones et al., 2018). The segregation velocity has also been
observed to increase with the size ratio, but with no evidence of a local maximum at a
size ratio of two as observed in other configurations (Golick and Daniels, 2009; Thornton
et al., 2012; Guillard et al., 2016). The existence and stability of the small particle layer
was demonstrated to be related to the exponential profile of the inertial number, specific
to flows on erodible beds, and to result from an equilibrium of the combined effects of the
inertial number and of the small particle concentration. Finally, diffusive remixing of small
particles into the large particle phase was demonstrated to be controlled by the inertial
number with the same dependency as segregation. It means that the Peclet number,
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defined as the ratio of segregation over diffusion is constant in the quasi-static regime.
In a second configuration, the evolution of initially segregated beds has been studied

with the coupled fluid-DEM model. The interface depth between large and small particles
was set in the dense regime. It was observed that, depending on the depth of the interface,
on the Shields number and on the size ratio, the bed can remain well separated or can
be well mixed. This bed state has been shown to result from the relative importance
of size segregation over diffusion. The dependence on the Shields number allowed us to
conclude that, in the dense regime, the Peclet number is not constant, that is to say that
diffusion remixing do not scale as segregation. This represents a main difference between
the quasi-static and the dense regime for the segregation processes.

The discrete simulation results have been upscaled to a continuum framework, using
the advection-diffusion model for size segregation of Gray and Thornton (2005), Thornton
et al. (2006) and Gray and Chugunov (2006). First, the infiltration of small particles in the
quasi-static bed has been studied. With advection and diffusion coefficients proportional to
the inertial number to the power 0.85, the dynamics of segregation is perfectly reproduced.
In this PhD, the advection-diffusion model has been used not only to upscale results
but also to evidence the complex interplay between the effects of the inertial number, of
the small particle concentration and of diffusion. This represents an original way to use
continuum models.

In order to enrich our understanding of the size segregation processes, physically based
parametrisations of the advection and diffusion coefficients were necessary. At the particle
scale, a large intruder is submitted, due to interactions with surrounding small particles,
to a buoyancy segregation force (Guillard et al., 2016) and a granular drag force (Tripathi
and Khakhar, 2011a). Based on these particle scale forces, a new advection-diffusion
model for segregation has been derived by Hugo Rousseau, a PhD colleague at INRAE.
This model therefore contains advection and diffusion coefficients with dependencies on
local physical parameters, such as the small particle concentration, granular pressure and
its gradient, the granular Stokes number and the segregation function. In this PhD, a
numerical method to solve the model has been proposed. The numerical solution has been
compared with the DEM results of the first configuration. Without any tuning parameters,
the model reproduces qualitatively the DEM results, in particular the infiltration as a
layer and the logarithmic descent with time. The granular viscosity has been shown to
play a major role in the segregation process, which can be interpreted as a free fall of small
particles in a complex fluid with varying viscosity.

In order to reproduce quantitatively the DEM results, additional dependencies with
the inertial number, the pressure, the small particle concentration and the size ratio have
been proposed in the segregation function and the drag coefficient. These dependencies are
based on fits and should therefore be verified on other, more canonical, flow configurations.
The capacity of this new advection-diffusion model to reproduce our simulations is very
encouraging and represents a first step in the upscaling process since it has been derived
from solid physical arguments using particle scale forces obtained in independent configu-
rations. It would be of major interest to use this model in other flow configurations.
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6.2. Perspectives

Finally the impact of size segregation on sediment transport has been studied in the
already segregated configuration with DEM simulations. It was observed that, for the
same flow conditions, the transport rate is higher in the bidisperse configuration than in
the monodisperse one. In cases where the small particles hardly mix with the overlying
large particles and for the range of studied size ratios (r < 4), it has been shown that the
increased mobility is not due to the reduction of roughness of the underlying small particles,
but to a granular flow effect due to rheological granular properties. Small particles being
more mobile than larger particles, they play the role of a conveyor belt for the overlying
large particles, increasing the total mobility of the bed. A simple predictive model for
the increase of transport, based on these rheological arguments, has been proposed. It
reproduces quantitatively the DEM results. The results of the model were used to identify
four different transport regimes of bidisperse mixtures, depending on the mechanisms
responsible for the mobility of the small particles. These results highlight the role of
the depth structure on the bed mobility and shows that, not only hydrodynamics but
also granular effects may impact sediment transport laws of bidisperse mixtures. This
represents an alternative and original approach of bidisperse bed mobility based on physical
granular media theories, relevant for intense transport regimes.

This PhD research represents an original contribution to the understanding of size
segregation in bedload transport and in granular flows in general. Bedload transport
allowed us to explore size segregation in a complex forcing configuration and for a wide
range of inertial numbers. The result similarities with other studies indicate that the
obtained results could be more general. A first step toward larger scales has been achieved
with continuum segregation models. This PhD also shows that size segregation can not
be dissociated from the study of diffusive remixing, which is part of the size segregation
process. Diffusive remixing in granular media has been barely studied and this opens new
perspectives for size segregation.

6.2 Perspectives
This PhD has addressed several size segregation problems during bedload transport with
different approaches. Some questions have been answered but many have been raised.
First, the generalization of the results, to laboratory experiments and to other granular
flow configurations, can be questioned. Second, it has been attempted to relate particle
scale results to continuum models. Despite the success of the study, it was shown that some
efforts are still needed to understand the nature of size segregation at the particle scale.
Finally, the role of diffusion in the segregation processes has been highlighted, emphasizing
the necessity to investigate diffusive remixing.

6.2.1 Interpretation of size segregation in laboratory experiments

The results presented in this PhD have been obtained in idealized 3D configurations and
with coupled fluid-DEM simulations. This model is built on grain-grain and fluid-grain
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interaction laws that could be inaccurate. A comparison with laboratory experiments
would therefore be of major interest.

Figure 6.1: Scheme of the experimental device (adapted from Frey et al. (2020)).

At INRAE, a quasi-2D channel is used to study bedload transport at the particle scale.
The experimental device is presented in figure 6.1 and has been recently used to study size
segregation mechanisms (Frey et al., 2020) and its impact on sediment mobility (Dudill
et al., 2017, 2018). The fluid and solid flow rates are imposed upstream and the slope
adjusts itself so that the transport capacity of the channel corresponds to the solid supply.
This configuration differs from the one studied in this PhD work as it is space dependent
in the streamwise direction. Indeed, small particles are advected not only vertically due
to size segregation but also in the streamwise direction by the mean granular flow (the
term ∇ · (uφs) does not vanish in the advection-diffusion models). In order to interpret
experiments performed in this channel, it would be necessary to transpose the results of
this PhD work to this configuration.

However the same segregation patterns have been observed in the channel experiments.
In Frey et al. (2020), the infiltration of small particles was studied. As in the DEM
simulations, a small particle layer occured (see figure 6.2a) showing a logarithmic time
elevation descent. Dudill et al. (2018) studied the slope evolution upon infiltration of fine
particles. In some cases, as in figure 6.2b, a small particle layer builds below the surface
and the slope decreases. The conveyor belt effect, highlighted in chapter 5 is particularly
visible in picture 6.2b. This indicates that the bed mobility increased, a lower slope
being sufficient to transport a higher quantity of sediments. To go further, it would be
interesting to relate the increased mobility mechanism described in this PhD work to the
slope evolution, which is a key parameter when studying the geomorphological evolution
of rivers.

It seems therefore that this device is particularly relevant to verify experimentally the
results obtained in the present PhD work. It is a more complex system, with a great
variety of segregation processes, complementary to the DEM simulations.
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(a)

(b)

Figure 6.2: Example of laboratory experiments of bidisperse bed during bedload transport.
(a) A small particle layer infiltrates the bed made of large particles, from Frey et al. (2020).
(b) The flow is from left to right and the picture is taken parallel to the bottom slope.
A small particle layer builds below the surface resulting in a reduction of the bed slope
(image Frey unpublished).

6.2.2 Extension to other configurations

The bedload configuration allowed us to study size segregation in a complex forcing. In
particular the exponential form of the inertial number was shown to influence strongly the
segregation dynamics. In addition, part of the results were obtained in the quasi-static
regime and it would be interesting to know if they are more general. Similarities with
other works in the dense regime, in particular the scaling with the inertial number (Fry
et al., 2018) and the dependence on the small particle concentration (Dolgunin and Ukolov,
1995; Jones et al., 2018), suggest that it is the case. A comparison between the segregation
dynamics in several dry canonical configurations, such as Bagnold flows, heap flows and
simple shear configurations would be valuable to understand size segregation in the general
case.

As mentioned in the introduction, the granular community started to investigate the
mobility of bidisperse avalanches (Linares-Guerrero et al., 2007) and of granular collapses
with fractal size distributions (Lai et al., 2017). They observed the formation of a small
particle basal layer due to size segregation correlated with an increase of mobility of the
granular flow. They did not propose physical explanations, but it reminds the conveyor
belt effect highlighted in the mobility problem studied in this PhD work. It would therefore
be interesting to verify if the rheological arguments provided in chapter 5 are still valid in
the dry configurations of Linares-Guerrero et al. (2007) and Lai et al. (2017).
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Figure 6.3: Vertical position with time of a large intruder in a small particle bed obtained
with a DEM simulation and compared with equation (6.1). θ ∼ 0.3, r = 2.

6.2.3 Rise of a large intruder

In chapter 4, the segregation dynamics has been studied based on particle scale forces. In
order to reproduce quantitatively the DEM results, some additonal dependencies were
proposed in the segregation function of Guillard et al. (2016) and in the drag coefficient
(Tripathi and Khakhar, 2011a).

To verify these dependencies, that are at the base of discrete and continuum modelling
of size segregation, it would be interesting to investigate the case of a single large intruder
in a small particle bed and to study its elevation evolution. This configuration can be set
up very easily with DEM simulations. The DEM is a very powerful tool to study these
dependencies as it allows one to access the number of contacts and the forces applied
by other particles on the intruder. My intuition is that the number of contacts and the
repartition of forces on the intruder are key parameters to understand the nature of size
segregation and the effect of the size ratio. The geomechanics community could provide
useful tools to analyse size segregation and the related dependencies with such an approach.

With the intruder configuration, it is also possible to track the rise of the large particle.
Figure 6.3 shows the elevation evolution with time of a large intruder obtained with a
DEM simulation. The segregation velocity is low in the quasi-static regime and strongly
increases while elevating. The elevation of the intruder can be compared with the following
equation of motion

ρpVl
dwl
dt

= Vl

(
F − 1

Φ

)
Φ(ρp − ρf )g cos(α)− cπdlηp(wl − wp). (6.1)

Assuming a constant value of F = 1.78 and c = 3, equation (6.1) is solved numerically and
plotted in figure 6.3a (dashed line). The numerical solution represents almost perfectly
the trend of the DEM solution, showing that it contains the good physical ingredients.
However, the numerical solution is very sensitive to the value of F , which had to be tuned.
This shows that the segregation F is a key parameter of the segregation equation, and
comparisons with DEM simulations could help to infer the underlying dependencies.
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The experimental device presented in figure 6.1 could also be used to study the rise
of the intruder. Indeed, the quasi-2D nature of the channel allows the tracking of the
intruder. It could be used to compare with DEM simulations but also with the equation
of motion (eq. 6.1).

6.2.4 Diffusive remixing

All along this PhD work, the lack of knowledge on diffusive remixing has been noticed. It
has however been stressed out that size segregation can not be dissociated from diffusive
remixing. Additionally, this is a question of primary importance for industrial applica-
tions, when a well-mixed granular medium is needed, and for geophysical applications, for
example to know whether the surface state of the bed is well mixed or segregated. The
present PhD started to address this issue by considering the Peclet number, defined as
the ratio between segregation and diffusion. The Peclet number was observed constant in
the quasi-static regime but non constant in the dense regime, suggesting a difference of
behaviour between both granular flow regimes.

To focus deeper on the study of diffusive remixing, the intruder configuration could
also be used. Adopting a statistical approach, information on the diffusion coefficient could
be obtained computing the standard deviation around the mean trajectory. This could
be performed in the bedload configuration, with DEM simulations or the experimental
channel, and in other dry granular flows such as Bagnold or simple shear flows. This is
classically done to study self-diffusion (Campbell, 1997; Utter and Behringer, 2004), and
can be extended to bidisperse configurations.

The already segregated configuration is also very interesting to study diffusive remixing.
As mentioned in chapter 5, the width of the transition between small and large particles
depends on the relative importance of segregation over diffusion. The shape and width of
the transition could be studied in more details, using the advection-diffusion model, to
extract more information on segregation and diffusion.

When increasing the size ratio, a completely different phenomenology occured, which
deserves a special attention. The granular flow structure was observed to drastically change
at r = 4 (figure 5.11). Trains of large particles formed deep in the bed and found stable
positions, as shown in figure 6.4. This sudden transition of the bed structure with the size
ratio suggests a granular instability. By analogy with fluid dynamics, this situation could
be analysed as a Rayleigh-Benard instability in stratified fluids. Indeed, small particles
are more mobile than the overlying large particles. The granular temperature is therefore
expected to be higher below the transition depth. The problem can be interpreted as a
two-layer problem with a hot region below a colder region, resulting in a vertical transfer of
particles. This mixing process could therefore be approached as a turbulent mixing process.
This situation reminds of the reverse segregation of large beads observed experimentally by
Thomas (2000) in dry granular avalanches. The author observed a transition around r = 4
from normal to reverse segregation, exactly as in our simulations. The mechanisms at play
may therefore to be the same. This configuration represents a very promising problem
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(a) (b)

Figure 6.4: Initially Nl = 2 layers of large particles were placed above small particles,
with a size ratio r = 4. At steady state, trains of large particles formed inside the bed,
suggesting a granular instability. (a) Picture of the DEM simulation at steady state. (b)
Volume fraction of large particles.

to study segregation and diffusion mechanisms in granular media. This challenges the
classical vision of size segregation and opens nice perspectives.
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Appendix A

Sensitivity analysis of the fluid-DEM
model in bidisperse configurations

Maurin (2015) performed a sensitivity analysis on the exact same coupled fluid-DEM code
with monodisperse simulations and showed that the DEM results were not so sensitive to
the input parameters. In order to verify again the robustness in bidisperse configuration,
a new sensitivity analysis has been performed. In the DEM, the adjustable parameters
are the restitution coefficient en, which is not easy to determine a priori, and the particle
friction coefficient µp. The fluid coupling only depends on the drag formulation, in which
the hindrance correction function can be questionned. In this sensitivity analysis, the
restitution coefficient en is strongly varied around en = 0.5, the value used in this PhD,
and the particle friction coefficient is increased, as the one used in this PhD is already a
low value (µp = 0.4). Concerning the drag formulation, only the case without hindrance is
tested, i.e. ζ = 0. The different simulations, with corresponding parameters, are reported
in table A.1. They have been made at Ns = 1 and ds = 0.004 m, as this is the reference
case in this PhD. The ’Ref’ simulation corresponds to the one presented in the PhD
(restitution coefficient en = 0.5, particle friction coefficient µp = 0.4, hindrance exponent
ζ = 3.1).

Run en µp ζ
Ref 0.5 0.4 3.1
en = 0.25 0.25 0.4 3.1
en = 0.75 0.75 0.4 3.1
µp = 0.6 0.5 0.6 3.1
µp = 0.8 0.5 0.8 3.1
ζ = 0 0.5 0.4 0.0

Table A.1

The results of these simulations are shown in figure A.1. The packing fraction profile
is barely not affected by the modification of the parameters. Concerning the velocity
profile, the same behaviour is observed in all simulations. The velocity is exponentially
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decreasing into the bed. The slope seem however slightly affected by the parameters. This
is not surprising as the hindrance coefficient modifies the fluid-particle coupling, and the
friction and restitution coefficients affect the vertical structure of the granular flow. On
the whole, this sensitivity analysis shows that the behaviour of the mixture bed is not so
much affected by the parameters.

Concerning the segregation dynamics, figure A.1c shows the segregation velocity of
the small particles as a function of the local inertial number. Despite the small variations
observed on the velocity profile, the segregation velocity scales with the inertial number
exactly the same way in all simulations. The same 0.85 exponent is recovered and the
curves are superimposed. This shows that the input parameters are not influencing the
segregation dynamics and the scaling with the inertial number is valid whatever the value of
the restitution coefficient, friction coefficient or hindrance. It conforts the results presented
in this PhD work.

In this sensitivity analysis, the fluid model resolution parameters, such as the size of
the averaging weighting function, have not been tested. Indeed, the exact same values as
in Maurin et al. (2015) have been used, and Maurin (2015) showed that the model is not
sensitive to these parameters, which are not modified by the bidisperse nature of the bed.
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(c)

Figure A.1: Sensitivity analysis for all simulations presented in table A.1. (a) Packing
fraction profile, (b) velocity profile and (c) segregation velocity as a function of the inertial
number.
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Appendix B

Solution of the purely advective
segregation model

May et al. (2010) already derived a solution to the model of Thornton et al. (2006) with an
exponential dependence of the segregation flux with z. In this appendix, the full solution
is presented in the bedload configuration. The segregation equation to solve is

∂φs
∂t
− ∂Fs

∂z
= 0, (B.1)

with the flux Fs = Sr0e
z/cφs(1− φs) and an initial step condition in concentration

φs0 = φs(z, 0) =
{

0, z < zi,
1, z ≥ zi.

(B.2)

The boundary conditions ensure that there is no flux at z = 0, H, which requires that

φs = 0 or 1, at z = 0 and H. (B.3)

Substituting the flux into (B.1) implies

∂φs
∂t

+W (z, φs)
∂φs
∂z

= S(z, φs) (B.4)

where

W (z, φs) = Sr0e
z/c (2φs − 1) , (B.5)

S(z, φs) = Sr0
c
ez/cφs(1− φs). (B.6)

Due to dependence of the flux both on z and φs, the equation to solve has a non-linear
advective velocity and a source term. In the following, this problem is solved using the
method of characteristics.
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On a characteristic curve (Z(s), t(s)),

dφs
ds

= ∂φs
∂t

dt

ds
+ ∂φs

∂z

dz

ds
= S. (B.7)

Comparing coefficients of (B.4) and (B.7)

dφs
ds

= S, (B.8)
dt

ds
= 1, (B.9)

dZ

ds
= W. (B.10)

Eliminating s implies

dφs
dt

= S (B.11)
dZ

dt
= W. (B.12)

The problem (B.4) is thus equivalent to the following system

d

dt
φs(Z(t), t) = S (Z(t), φs (Z(t), t)) ,

dZ(t)
dt

= W (Z(t), φs (Z(t), t)) ,

Z(0) = z0.

(B.13)

The first equation indicates that φs is not constant along a characteristic curve and the
second equation that the characteristic curves are not linear. The method of characteristics
consists in solving the value of φs along the characteristics curves. If a characteristic curve
passing by each time and space position exists, then the problem can be fully resolved. In
order to compute the value of φs along a characteristic curve, the first equation of (B.13)
is differentiated with time

d2

dt2
φs(Z(t), t) = d

dt
[S (Z(t), φs (Z(t), t))] , (B.14)

distributing the derivative,

d2

dt2
φs(Z(t), t) = dZ

dt

∂S

∂z
+ dφs (Z(t), t)

dt

∂S

∂φs
, (B.15)
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and introducing the first and second equation of (B.13) it implies,

d2

dt2
φs(Z(t), t) = W

∂S

∂z
+ S

∂S

∂φs
. (B.16)

Using equation (B.5) and (B.6), one can remark that ∂S/∂z = S/c and ∂S/∂φs = −W/c.
Introducing this in (B.16), the second derivation with time of φs along a characteristic
curve is identically null,

d2

dt2
φs(Z(t), t) = 0. (B.17)

Integrating twice with time, a linear dependence on time of φs is obtained,

φs(Z(t), t) = φs0(z0) + S (z0, φs0(z0)) t. (B.18)

The value of φs along the characteristic curve is entirely determined by its inititial value
and therefore by the initial condition φs0. It is now possible to compute the position with
time of a characteristic curve. Introducing (B.18) in the second equation of (B.13) and
integrating, a relation for the characteristic curves is obtained,

e−Z(t)/c − e−z0/c = −Sr0
c

(2φs0(z0)− 1)t− Sr0
c
S (z0, φs0(z0)) t2, (B.19)

⇔ Z(t) = z0 − c ln
(

1− 1
c
W (z0, φs0(z0)) t− Sr0

c
ez0/cS (z0, φs0(z0)) t2

)
, (B.20)

and the characteristic curve is entirely determined by the value of the initial solution φs0
in its origin position z0. Finally the solution to system (B.13) is

φs(Z(t), t) = φs0(z0) + S (z0, φs0(z0)) t,

Z(t) = z0 − c ln
(

1− 1
c
W (z0, φs0(z0)) t− Sr0

c
ez0/cS (z0, φs0(z0)) t2

)
.

(B.21)

Equation (B.21) is a general solution for any initial condition. In the present con-
figuration the initial solution (B.2) is a step of concentration with a discontinuity at zi
and represents an initial state where a pure layer of small particles is placed above a bed
of only large particles. Figure B.1 shows the full solution for the case zi = 6, and the
derivation of this solution is presented below. According to the second equation of (B.13),
the characteristic curves coming from z0 < zi have a negative velocity and are going down.
Conversely, those coming from z0 > zi are going up. Therefore there is a rarefaction fan,
where no characteristic curves are present.

For z0 < zi, φs0(z0) = 0, the equation of the characteristic curves are Z(t) = z0 −
c ln

(
1 + Sr0

c
ez0/ct

)
. Along these characteristics, φs(Z(t), t) = 0. z1 is defined as the

characteristic curve at the bottom of the rarefaction zone (coming from zi): z1(t) =
zi − c ln

(
1 + Sr0

c
ezi/ct

)
. z1 is the lower bound of the rarefaction zone. The time at which

z1 meets the bottom of the domain is called t1 = c
Sr0

(1− e−zi/c) and corresponds to the
time when the first small particle reaches the bottom.
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(a) (b)

Figure B.1: Example of solution obtained by the method of characteristics. zi = 6 (a)
First time steps, (b) full solution.

For z0 > zi, φs0(z0) = 1, the equation of the characteristic curves are Z(t) = z0 −
c ln

(
1− Sr0

c
ez0/ct

)
. Along these characteristics, φs(Z(t), t) = 1. z2 is defined as the

characteristic curve coming from zi: z2(t) = zi− c ln
(
1− Sr0

c
ezi/ct

)
. z2 is the upper bound

of the rarefaction zone. The time at which z2 meets the top of the domain is called
t2 = c

Sr0
(e−zi/c − e−H/c) and corresponds to the time when the first large particle reaches

the top.
Once z2 reaches the top of domain at t2 the boundary condition (B.3) implies that

φ(H, t2) jumps from 1 to 0. A shock forms and the position of the shock must satisfy the
Rankine-Hugoniot relation, which ensures the conservation of momentum through the
shock

z′2 = −Fs(φ
+)− Fs(φ−)
φ+ − φ−

. (B.22)

Above the shock φ+ = 0 and below φ− is the solution in the rarefaction zone

z′2 = −Sr0ez2/c (1− φs(z2, t)) . (B.23)

A similar expression applying the Rankine-Hugoniot relation is found for z1 for t > t1.
For now, as no solution in the rarefaction has been computed, the shock evolution
equation (B.23) cannot be solved. The solution in the rarefaction zone is now computed.
The rarefaction zone is delimited by z1 and z2. Due to the discontinuity in the initial
solution, no characteristic curves are present in the rarefaction wave (z1 ≤ z ≤ z2). In order
to find a solution, it is considered that there is an infinity of characteristic curves coming
from the point of discontinuity zi, each of them being associated to a different initial value,
noted φ̄s0 and verifying φs0(zc)− = 0 ≤ φ̄s0 ≤ 1 = φs0(zc)+. In other words, for (z, t) in
the rarefaction zone, one looks for a characteristic curve coming from zi associated to an
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initial value φ̄s0 and verifying system (B.21)
φs(z, t) = φ̄s0 + S

(
zi, φ̄s0

)
t,

e−z/c − e−zi/c = −Sr0
c

(2φ̄s0 − 1)t− Sr0
c
ezi/cS

(
zi, φ̄s0

)
t2.

(B.24)

To compute the value of φs in the rarefaction zone with the first equation of (B.24),
only the value of φ̄s0 is missing. It is computed by an invertion of the second equation of
(B.24) (quadratic equation and choosing the relevant solution)

φ̄s0 = 1
2 + c

Sr0t
e−zi/c

1− e(zi−z)/c

√
1 +

(
Sr0t

2c

)2
e(z+zi)/c

 . (B.25)

Inserting (B.25) into the first equation of (B.24) the solution in the rarefaction zone is

φs(z, t) = 1
2 −

c

Sr0t
e−z/c + c

Sr0t
e−(z+zi)/(2c)

√
1 +

(
Sr0t

2c

)2
e(z+zi)/c. (B.26)

The equation of the shock (B.23) can now be solved. However due to the complex form
of the solution in the rarefaction zone (B.26) the equation of the shock (B.23) is solved
numerically. Finally the full solution is presented on figure B.1.

A long time asymptotic analysis can be performed on the solution in the rarefaction
zone B.26. Remembering that the lower bound of the rarefaction zone is z1 and focusing
on the sqare root term in (B.26)

(
Sr0t

2c

)2
e(z+zi)/c ≥

(
Sr0t

2c

)2
e(z1+zi)/c. (B.27)

The expression of z1 is
z1(t) = zi − c ln

(
1 + Sr0

c
ezi/ct

)
. (B.28)

For t� t0 = c/Sr0e
−zi/c,

1 + Sr0
c
ezi/ct ∼ Sr0

c
ezi/ct, (B.29)

and the following expression is obtained for z1

z1(t) = −c ln
(
Sr0t

c

)
. (B.30)

Replacing the latter expression of z1 in (B.27),
(
Sr0t

2c

)2
e(z+zi)/c ≥ Sr0t

4c e
zi/c, (B.31)
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and for t� 4t0 = 4c/Sr0e−zi/c,(
Sr0t

2c

)2
e(z+zi)/c ≥ Sr0t

4c e
zi/c � 1. (B.32)

Finally for t� 4t0,

1 +
(
Sr0t

2c

)2
e(z+zi)/c ∼

(
Sr0t

2c

)2
e(z+zi)/c, (B.33)

and the solution in the expansion fan simplifies to,

φs(z, t) = 1− c

Sr0t
e−z/c. (B.34)

In the present configuration, c ∼ 1, Sr0 ∼ 1e− 8, zi ∼ 10. The simplified expression of φs
is therefore valid for dimensionless times larger than t0 ∼ 1e3, time achieved very rapidly
during simulations.
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Appendix C

Derivation of the Rousseau et al.
(subm) models for size segregation

In this appendix, the mutliphase flow and advection-diffusion models, based on the particle
scale forces of Guillard et al. (2016) and Tripathi and Khakhar (2011b), are derived. This
is part of Rousseau et al. (subm), and had been only slightly modified to be consitent with
the notations used in this PhD.

C.1 Volume averaged multi-phase flow model

Following Jackson (1997, 2000), the mass and momentum balance equations for each class
are given by

∂ερfuf

∂t
+∇.

(
ερfuf

)
, (C.1)

∂Φiρpui

∂t
+∇.

(
Φiρpui

)
, (C.2)

∂ερfuf

∂t
+∇.

(
ερfuf ⊗ uf

)
= ∇.Sf − ερfg− nlff→l − nsff→s (C.3)

∂Φiρpui

∂t
+∇.

(
Φiρpui ⊗ ui

)
= ∇.Si − Φiρpg + niff→i + nifδ→i, (C.4)

where f is the fluid and indices i = l, s denote the large particle phase and the small
particle phase respectively (δ = l if i = s and δ = s if i = l). Φl and Φs are the volume
fractions for the large and small grains and verify Φs + Φl = Φ where Φ is the volume
fraction of the mixture, i.e. the total solid volume fraction. Consequently, the fluid volume
fraction is ε = 1−Φl−Φs. Sk is the stress tensor associated with phase k with k = l, s or f .
They can be separated into pressure and shear stress contribution

Sk = −pkI + τ k, (C.5)
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where τ k is the shear stress tensor and pk is the pressure of phase k. It should be noticed
that for a solid phase, the static pressure arises from the enduring contacts between the
particles. Thanks to the mixture model approaches (Morland, 1992), it can be assumed
that each particle phase carries the total overburden pressure pm according to their local
volume fraction as

pi = Φi

Φ P p, (C.6)

where P p is the bulk granular pressure.

The momentum equations (C.3) and (C.4) contain two terms coming from the mo-
mentum exchange between the different phases: niff→i and nifδ→i. The term niff→i is
the averaged value of the resultant forces exerted by the fluid on the particles of phase i.
Jackson (2000) showed that for a collection of immersed particles, this interaction force
can be written as

niff→i = −Φi∇pf + niff→id , (C.7)

where Φi∇pf is the buoyancy force exerted by the fluid phase on the particles and niff→id

is the particle averaged viscous drag force between the particles and the fluid phase. The
term nifδ→i is the averaged value of all interacting forces between large and small particle
phases. It can be directly expressed in 3D from the local segregation force of Tripathi and
Khakhar (2013) and Guillard et al. (2016).

Therefore, the developed model is general and can be applied to 3D configurations.
For simplicity and for the purpose of the present study, the model will be only developed
for a 1D uniform flow.

C.2 Simplified 1D vertical multi-phase flow model

The multi-phase flow model (equations C.1 to C.4) is simplified by considering a uniform
flow in the streamwise direction. From now, all the variables only depend on the vertical
position z. Therefore, the spatially averaged velocity of the phase k can be written as
uk = uk(z)ex + wk(z)ez. The mass conservation equations simplify to

∂ε

∂t
+ ∂εwf

∂z
= 0 and ∂Φi

∂t
+ ∂Φiwi

∂z
= 0, (C.8)

and the momentum balance equations in the vertical direction are:

ρf
[
∂εwf

∂t
+ ∂εwfwf

∂z

]
= −ε∂p

f

∂z
− ερfg cosα− nl < f f→ld > −ns < f f→sd >, (C.9)

ρp
[
∂Φlwl

∂t
+ ∂Φlwlwl

∂z

]
= −∂p

l

∂z
− Φl∂p

f

∂z
− Φlρpg cosα + nl < f f→ld > +nl < fs→l >,

(C.10)
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ρp
[
∂Φsws

∂t
+ ∂Φswsws

∂z

]
= −∂p

s

∂z
− Φs∂p

f

∂z
− Φsρpg cosα + ns < f f→sd > +ns < fl→s > .

(C.11)
In the two last equations, the solid pressures pl and ps are given by equation (C.6). To solve
these equations, it is necessary to prescribe closures for the spatially averaged fluid/grain
interaction and grain-grain interactions, and for the granular and fluid pressures.

Considering the fluid-grain interaction, both small and large granular phases interact
with the fluid phase through Φi∇pf and the drag force niff→id . For an assembly of particles,
the spatial averaging of the vertical total drag force applied by the fluid gives

nl < f f→id >= Φiρp

ti

(
wf − wi

)
, (C.12)

where ti = ρpd2
i (1− Φ)3/18ηf is the particle response time and di is the particle diameter

of phase i. The factor (1− Φ)3 is a correction proposed by Richardson and Zaki (1954)
to take into account hindrance effects. Since the drag is linear, the spatial averaging is
simply the drag force applied on one particle, given by F f

d = 3πηfdi(wi − wf ), multiplied
by the number of particles per unit volume ni = Φi/V i (Jackson, 2000), where V i is the
volume of a single large particle.

The granular phases also interact with each other and the grain-grain interaction
closure should be prescribed in the model. For a single large grain in a bath of small
particles, it has been shown in in the introduction chapter 1.3.1 that small particles exert
three forces on a large intruder. The granular buoyancy force is included in the pressure
gradient term. Therefore, the granular interaction term is reduced to the segregation force
and the granular drag force,

fs→l = Fd + Fseg. (C.13)

To extend these forces to a collection of large particles, the interaction force fs→l is spatially
averaged. Since this force is linear, it amounts to multiplying fs→l by the number of large
particles per unit volume nl = 6Φl/πd3

l . Therefore, the total solid interaction force exerted
by the small particles on the large ones is given by

nl < fs→l >= Φlρp

tls

(
ws − wl

)
+ ΦlF ′(µ)∂P

p

∂z
, (C.14)

where tls = ρpd2
l /6cηp is the particle response time for the drag force between small and

large particles and F ′(µ) = F(µ)− 1
Φ with F(µ) is the segregation function proposed by

Guillard et al. (2016). According to the Newton’s third law, the force exerted by the large
particles on the small ones (equation C.11) is

ns < fl→s >= −nl < fs→l > . (C.15)
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The solid mixture phase is made of both particle phases and is noted with i = m. Its
momentum balance is obtained by summing (C.10) and (C.11). Since the mixture phase
does not distinguish between small and large particles, the solid interaction forces should
not appear in this equation. Equation (C.15) ensures that these forces vanish when
developing the mixture momentum equation.

The proposed volume-averaged multi-phase flow model describes size segregation of
a bi-disperse mixture immersed in a fluid. This represents an improvement upon the
model of Thornton et al. (2006), which was based on semi-empirical parametrisation of the
interparticle forces between small and large particles. The present model provides closures
based on forces applied on a single particle, and bridges the gap between granular scale
processes and continuum modelling in size segregation. This important result will be used
in the following to derive an advection-diffusion model for size segregation.

C.3 Derivation of the advection-diffusion model

A classical continuum approach to model size segregation is the advection-diffusion model
(Dolgunin and Ukolov, 1995; Gray and Thornton, 2005). These models can be derived
from the multicomponent mixture theory (Thornton et al., 2006; Gray and Ancey, 2011)
by substituting the percolation velocity of one particle-size into the mass conservation
equation. The advection and diffusion coefficients can be modelled using experimental
and theoretical closures (Dolgunin et al., 1998; Van der Vaart et al., 2015; Ferdowsi et al.,
2017; Cai et al., 2019) or can be derived as a simplification from the continuum model of
Thornton et al. (2006) and Gray and Chugunov (2006). In the present section, the multi-
phase model developed in the previous section (equations C.9 to C.11) makes it possible
to derive an advection-diffusion model similar to Thornton et al. (2006) and Gray and
Chugunov (2006), with advection and diffusion coefficients depending on the segregation
and the drag forces (Guillard et al., 2016; Tripathi and Khakhar, 2013) determined in
independent idealised configurations.

Combining equations (C.11), (C.12), (C.14) and (C.15), the momentum balance of
small particles can be written as:

ρp
[
∂Φsws

∂t
+ ∂Φswsws

∂z

]
= −∂p

s

∂z
− Φs∂p

f

∂z
− Φsρpg cosα + ρpΦs

ts

(
wf − ws

)
− ρpΦ

tls

(
ws − wm

)
+ ΦlF ′(µ)∂P

p

∂z
. (C.16)

The total volume fraction Φ = Φs + Φl is assumed to be constant and equal to Φmax = 0.61
since particle velocity fluctuations are small. For a deposited bed, the particle momentum
balance in the wall-normal direction reduces to a hydrostatic pressure distribution for both
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the fluid and the particle phases (Chauchat, 2018):

∂pf

∂z
= −ρfg cosα and ∂P p

∂z
= −Φ

(
ρp − ρf

)
g cosα. (C.17)

Assuming a constant mixture solid phase volume fraction, the pressure gradient can be
integrated to give the pressure distributions:

pf = ρfg cosα (h− z) and pm = Φ
(
ρp − ρf

)
g cosα (h− z) . (C.18)

Following Thornton et al. (2006), the volume fraction per unit granular volume is introduced
as φi = Φi/Φ. This notation is more convenient since it ensures φs+φl = 1. Using equation
(C.6), the momentum equation (C.16) for small particles is rewritten as follows:

Φρp
[
∂φsws

∂t
+ ∂φswsws

∂z

]
= −pm∂φ

s

∂z
+ ρpφsΦ

ts

(
wf − ws

)
− ρpΦ

tls

(
ws − wm

)
+ φlΦF ′(µ)∂p

m

∂z
. (C.19)

Using the same dimensionless variables proposed in equation (4.7) for a single intruder,
the equation (C.19) is made dimensionless as follows:

∂φsw̃s

∂t̃
+ ∂φsw̃sw̃s

∂z̃
= − p̃

m

Φ
∂φs

∂z̃
+ φs

Stf

(
w̃f − w̃s

)
− (w̃s − w̃m)

Stp
+ φlF ′(µ)∂p̃

m

∂z̃
. (C.20)

Rousseau et al. (subm) showed that Stf >> Stp in the granular bed and therefore the fluid
drag force can be neglected. Furthermore, assuming a quasi-steady state and neglecting
inertial terms, equation (C.20) can be rewritten as

− p̃
m

Φ
∂φs

∂z̃
− (w̃s − w̃m)

Stp
+ φlF ′(µ)∂p̃

m

∂z̃
= 0, (C.21)

from which, assuming wm = 0 (Thornton et al., 2006), the flux of small particles can be
expressed as

φsw̃s = −φ
s

Φ p̃mStp
∂φs

∂z̃
+ φlφsF ′(µ)Stp∂p̃

m

∂z̃
. (C.22)

Equation (C.22) is then substituted in the mass conservation equation (C.8) to obtain the
following advection-diffusion equation for the percolation of small particles:

∂φs

∂t̃
+ ∂

∂z̃

(
φlφsSr

)
= ∂

∂z̃

(
D
∂φs

∂z̃

)
, (C.23)

with
Sr = F ′(µ)Stp∂p̃

m

∂z̃
and D = φsp̃mStp

Φ , (C.24)

Since the pressure gradient is negative, Sr is negative which ensures a downward flux for
the small particle phase.
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Abstract Understanding particle size segregation is one of the great challenge in fluvial
geomorphology. It is still notoriously difficult to predict sediment transport more accu-
rately than within one order of magnitude. One of the main origin of this difficulty is
particle size segregation, a granular process of particle sorting in the sediment bed. Size
segregation is therefore a grain scale process impacting the morphological scale.

This PhD presents a numerical study of size segregation as a granular process during
bedload transport. A coupled fluid discrete element method (DEM) is used to study the
infiltration of small particles in a large particle bed. This configuration, close to granular
flows on erodible bed, is characterized by a particle velocity profile, a shear rate profile and
an inertial number profile exponentially decreasing into the bed. It presents a particular
segregation phenomenology with small particles infiltrating the bed as a travelling wave,
the velocity being controlled by the inertial number at the bottom of the layer. The
segregation velocity is observed dependent on the local small particle concentrations and
on the size ratio. The segregation problem is also analyzed with an advection diffusion
model. With advection and diffusion coefficients both proportional to the inertial number,
the continuum model perfectly reproduces the dynamics observed in the DEM results.

Very recently, a new segregation advection diffusion model has been derived based
on particle scale forces, in particular a granular buoyancy force (or segregation force)
and an inter-particle drag force. This provides new physically based parametrisations
for the advection and diffusion coefficients. This new model is analysed in the bedload
configuration, and reproduces qualitatively the DEM results. To improve the model, new
dependencies on the inertial number and small particle concentration are proposed for the
segregation and drag forces.

Finally, the impact of size segregation on sediment transport is studied through the
mobility of bidisperse already segregated particle beds. Large particles are placed above
small ones, and it is observed that, in the same fluid and surface bed conditions, the
transport rate is higher in the bidisperse configuration than in the monodisperse one. For
the range of studied size ratio (r < 4), it is showed that it is not a rugosity but a granular
effect. This is analyzed within the framework of the µ(I) rheology and it is demonstrated
that the buried small particles are more mobile than larger particles and play the role of
a conveyor belt for the large particles at the surface. Based on rheological arguments, a
simple predictive model for the additional transport in the bidisperse case is proposed,
which reproduces quite well the DEM results for a large range of Shields number and for
size ratios smaller than 4. The results of the model were used to identify four different
transport regimes of bidisperse mixtures, depending on the mechanisms responsible for
the mobility of the small particles.

This work represents an important improvement in the understanding of size segre-
gation during bedload transport and questions our understanding of bidisperse granular
media, which have not been much studied. It also represents a first step in an upscaling
process towards the morphological scale through continuum models.
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