
HAL Id: tel-03211343
https://tel.archives-ouvertes.fr/tel-03211343

Submitted on 28 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection and estimation of stage-discharge rating shifts
for retrospective and real-time streamflow quantification

Matteo Darienzo

To cite this version:
Matteo Darienzo. Detection and estimation of stage-discharge rating shifts for retrospective and real-
time streamflow quantification. Hydrology. Université Grenoble Alpes [2020-..], 2021. English. �NNT :
2021GRALU006�. �tel-03211343�

https://tel.archives-ouvertes.fr/tel-03211343
https://hal.archives-ouvertes.fr


 

THÈSE 

Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES 

Spécialité : Océan, Atmosphère, Hydrologie 

Arrêté ministériel : 25 mai 2016 

 
Présentée par 

Matteo DARIENZO 
 
 

Thèse dirigée par Michel LANG,  
et co-encadrée par Jérôme LE COZ et Benjamin RENARD 
 
préparée au sein de l’unité de recherche RiverLy à INRAE centre 
de Lyon-Grenoble, France  
dans l'École Doctorale Terre, Univers, Environnement (TUE) 

 
Detection and estimation of 
stage-discharge rating shifts  
for retrospective and real-time 
streamflow quantification 

 
Thèse soutenue publiquement le 2 Février 2021, 
devant le jury composé de :  

Mme Anne-Catherine FAVRE 
Professeure, Université Grenoble Alpes, France, Présidente 

M. Gil MAHE 
Directeur de recherche, IRD, HydroSciences, Montpellier, France, 
Rapporteur 

M. Dirceu REIS 
Professeur, Université de Brasilia, Brésil, Rapporteur 

M. Asgeir PETERSEN-ØVERLEIR 
Ingénieur spécialiste, Statkraft Energy AS, Oslo, Norvège, Examinateur 

M. Michel LANG 
Chercheur IDTPE (HDR), INRAE Lyon-Grenoble, France, UR RiverLy, 
Directeur de thèse 

M. Jérôme LE COZ 
Chercheur ICPEF (HDR), INRAE Lyon-Grenoble, France, UR RiverLy, Co-
encadrant de thèse, Invité 

M. Benjamin RENARD 
Chargé de recherche, INRAE Lyon-Grenoble, France, UR RiverLy, Co-
encadrant de thèse, Invité 

M. Arnaud BELLEVILLE 
Ingénieur spécialiste, EDF-DTG, Grenoble, France, Invité 

Mme Karine DELAMARRE 
Ingénieure spécialiste, CNR, Lyon, France, Invitée 
 

 





CONTENTS

Acknowledgements ix

Résumé xi

Abstract xiii

List of Figures xxii

List of Tables xxiii

1 Introduction 1

1.1 Context and challenges related to discharge quanti�cation . . . . . . . . . . . . . 1

1.1.1 Monitoring stream�ow: the rating curve . . . . . . . . . . . . . . . . . . . 1

1.1.2 Hydraulic principles behind the rating curve . . . . . . . . . . . . . . . . . 2

1.1.3 Rating curve uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Rating changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Managing rating changes in real time . . . . . . . . . . . . . . . . . . . . . 8

1.2 State-of-the art for the detection and estimation of rating changes . . . . . . . . . 15

1.2.1 Dynamic modelling of transient changes . . . . . . . . . . . . . . . . . . . 15

1.2.2 Detecting and estimating sudden changes . . . . . . . . . . . . . . . . . . 16

1.2.3 Real-time challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Objectives and outline of the manuscript . . . . . . . . . . . . . . . . . . . . . . . 21

i



CONTENTS

2 Segmentation of gaugings 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Rating curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Detecting and modelling transient changes . . . . . . . . . . . . . . . . . . 26

2.1.3 Detecting sudden changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.4 Change point detection methods . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.5 Objectives of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 The proposed method for rating shift detection . . . . . . . . . . . . . . . . . . . 32

2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Estimation of the baseline rating curve . . . . . . . . . . . . . . . . . . . . 32

2.2.3 Computation of residuals and their uncertainty . . . . . . . . . . . . . . . 32

2.2.4 Segmentation model and Bayesian inference . . . . . . . . . . . . . . . . . 34

2.2.5 Choice of the optimal number of segments . . . . . . . . . . . . . . . . . . 37

2.2.6 Adjustment of shift times . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.7 Recursive segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Application to a real case study: the Ardèche River at Meyras, France . . . . . . 40

2.3.1 Presentation of the station . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2 Segmentation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3.3 Results with Strategy D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.4 Comparison of Strategies A-D . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Performance evaluation from simulated rating shifts . . . . . . . . . . . . . . . . 46

2.4.1 Generation of synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.2 Design of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4.3 Metrics for performance evaluation . . . . . . . . . . . . . . . . . . . . . . 49

2.4.4 Results of the experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5.1 Contributions to the operational practice and the scienti�c literature . . . 56

2.5.2 Current limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.5.3 Avenues for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Matteo Darienzo



CONTENTS

3 Stage-recession analysis 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.1.1 Stage-discharge rating shifts at hydrometric stations . . . . . . . . . . . . 63

3.1.2 Methods for estimating river bed evolution . . . . . . . . . . . . . . . . . 63

3.1.3 Recession analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.4 Objectives and structure of the paper . . . . . . . . . . . . . . . . . . . . 66

3.2 The proposed method for river bed estimation using stage recessions . . . . . . . 68

3.2.1 Step 1: Extraction of the stage-recessions . . . . . . . . . . . . . . . . . . 68

3.2.2 Step 2: Bayesian estimation of the stage-recessions . . . . . . . . . . . . . 69

3.2.3 Third step: recessions segmentation . . . . . . . . . . . . . . . . . . . . . 73

3.3 Application: Ardèche River at Meyras, France . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Description of the station site . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2 Step 1: Recessions extraction . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.3 Step 2: Recessions estimation . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.4 Step 3: Recessions segmentation . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.5 Sensitivity to the selected recession model . . . . . . . . . . . . . . . . . . 79

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4.2 Perspective: real-time stage-recession analysis . . . . . . . . . . . . . . . . 85

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Fast detection of potential rating shifts based on the stage record and bedload

assessment 89

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.1 General principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.2 Sediment transport modelling . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.3 Sediment transport models as proxys for potential changes . . . . . . . . . 91

4.1.4 Objectives and structure of the chapter . . . . . . . . . . . . . . . . . . . 92

4.2 The proposed sediment transport proxy analysis . . . . . . . . . . . . . . . . . . . 93

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.2 Information available from the station history . . . . . . . . . . . . . . . . 93

Matteo Darienzo



CONTENTS

4.2.3 Estimation of the triggering stage and detection of all potential mor-

phogenic events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.4 Computation of the sediment transport . . . . . . . . . . . . . . . . . . . 96

4.2.5 Estimation of the uncertainty on the potential shifts . . . . . . . . . . . . 97

4.3 Application to the Ardèche River at Meyras, France . . . . . . . . . . . . . . . . 99

4.3.1 Information from the station history . . . . . . . . . . . . . . . . . . . . . 99

4.3.2 Estimation of the triggering stage and detection of all potential shift times 99

4.3.3 Relation between shift ∆b and sediments volume V . . . . . . . . . . . . . 102

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.1 Main limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.2 Use of the method for retrospective purposes . . . . . . . . . . . . . . . . 107

4.4.3 Other perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 The real-time application 111

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1.1 Retrospective vs Real-time analysis . . . . . . . . . . . . . . . . . . . . . . 111

5.1.2 Solutions proposed in the literature and main di�culties . . . . . . . . . . 112

5.1.3 Outline of a real-time procedure . . . . . . . . . . . . . . . . . . . . . . . 113

5.1.4 Objectives and structure of the chapter . . . . . . . . . . . . . . . . . . . 115

5.2 The proposed real-time application . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Initialisation: hydraulic analysis . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.2 Retrospective analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.3 Incoming stage data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.4 Shift detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.5 Shift estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.6 Update of RC priors and RC estimation . . . . . . . . . . . . . . . . . . . 119

5.2.7 Discharge computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.8 Start of a new stable period . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Application to the Ardèche River at Meyras: a demo . . . . . . . . . . . . . . . . 121

5.3.1 Overview of the application . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.2 The retrospective analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Matteo Darienzo



CONTENTS

5.3.3 Iteration 15: recession analysis but no shift . . . . . . . . . . . . . . . . . 128

5.3.4 Iteration 16: recession analysis and new gauging but no shift . . . . . . . 130

5.3.5 Iteration 82: exceedance of the triggering stage and detection of a potential

shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3.6 Iteration 191: �ood peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.7 Iteration 287: application of the stage-recession analysis after the �ood . . 136

5.3.8 Iteration 311: new gauging and rating shift con�rmation . . . . . . . . . . 138

5.3.9 Summary of the application . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.1 Main limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.2 Stage pre-treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4.3 Future perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Conclusions and perspectives 145

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.1 Improvement of the proposed tools for rating shift detection . . . . . . . . 148

6.2.2 Performance evaluation using a wide range of hydrometric stations . . . . 150

6.2.3 Development of other tools for potential rating shift detection . . . . . . . 153

6.2.4 Choice of the tools for shift detection/estimation . . . . . . . . . . . . . . 156

6.3 Implementation into operational applications . . . . . . . . . . . . . . . . . . . . 158

Matteo Darienzo





ACKNOWLEDGEMENTS

So many people helped me during these years of PhD and it is impossible for me to thank

all of them. I apologize in advance to those I unfairly forget.

First of all, I am deeply grateful to the perfect trio of supervisors: Michel Lang, for his

large experience in Hydrology and in supervising PhD students. He always tried to valorise my

work. Jérôme Le Coz, for his ability to keep clear the overall picture of the scienti�c problems

of this thesis, to manage the planning in order to respect the deadlines and to guide me over

the operational aspects. Benjamin Renard, for his undeniable support during the statistical

developments of this thesis work. I learnt so much from him. Moreover, they all showed great

pedagogical skills, in particular during the redaction period, giving me advices, remarks and tips

with patience and kindness.

Then, I would like to thank the members of the jury for their interest in this thesis project, and

the members of the three thesis committees (Anne-Catherine Favre (UGA), Arnaud Belleville

(EDF), Sara Puijalon (CNRS), Alexandre Hauet (EDF), Damien Sevrez (EDF), Elodie Dufeu

(SCHAPI), David Besson (DREAL), Gilles Pierrefeu (CNR), Karine Delamarre (CNR), Benoit

Camenen (INRAE)) for their undeniable contribution. Their criticisms and suggestions, espe-

cially from operational perspectives, have greatly contributed to the completion of this thesis

work.

I also thank the funders of this thesis (Electricité de France - EDF, Compagnie Nationale du

Rhône - CNR, and Service central d'hydrométéorologie et d'appui à la prévision des inondations

- SCHAPI) to have demonstrated from the very beginning a true interest in the objectives of this

project. This has always motivated my work, even during the most challenging periods. Moreover

vii



CONTENTS

the substantial fundings allowed me to participate in enriching international conferences and

formations.

Data and expert knowledge used in this thesis were provided by the French National Hy-

drological Services (Unité d'Hydrométrie et de Prévision des Crues Grand Delta, Guillaume

Fourquet as regards the Ardèche River at Meyras station), the New Zealand Regional Coun-

cil (Mike Ede, for the Wairau River at Barnetts Bank), the CVH Ile de la Réunion and

O�ce de l'Eau de la Réunion (Valérie Payet, for the Mat River at Escalier). Other sta-

tions have been processed using data and knowledge from USGS (Thomas Over, Julie Kiang,

Robert Mason). This thesis work has also made use of a few existing codes: BaM, Bayesian

Modelling (developed by Benjamin Renard and which also uses the DMSL library of Dmitri

Kavetski), BaRatinAGE (https://forge.irstea.fr/projects/baratinage_v2), BaRatin-SPD (https:

//forge.irstea.fr/projects/bam/�les) developed by Valentin Mansanarez during his thesis.

I thank the holding institute (Institut national de recherche pour l'agriculture, l'alimentation

et l'environnement - INRAE, ex Irstea), especially the Research Unit RiverLy based in Lyon-

Villeurbanne for these years of perfect working conditions: the comfortable o�ces, the convivial

atmosphere with colleagues, the breaks and �pots� at �coin café". I want to thank Etienne

Leblois and Michel Lang who gave me the opportunity to teach at the National School of State

Public Works - ENTPE in Vaulx-en-Valin for the courses of Hydrology/Hydraulics, and Chris-

tine Poulard for her patience and technical support during the teaching experience. Among the

other colleagues at INRAE I want to thank Benoit, Laura, Emeline, Jérôme for sharing with

me the amazing trip to New Zealand in the end of 2019 (just a few months before Covid chaos)

for the RCEM conference in Auckland. And then, all other PhD students at INRAE of the UR

RiverLy. In particular, Sheng who welcomed me with extreme kindness at my arrival, Yassine

who started the PhD at the same period as me and helped me on numerous occasions, Ivan for

our interesting discussions on programming and R, Alexandre for our discussions on statistics

but more generally about life, Peng (who was bearing me during the last year of my thesis work,

xièxiè), Miguel (El mexicano, hasta luego amigo!), but also Mathieu, Emilie, Guillaume B., Mo-

hammad, Tarek, Musaab, Shashank, Junjian, Clarisse, Juliette. Finally, I thank all postdocs and

cdd (among them Emeline, Aurélien, Léa, Jules, Quentin), all "stagiaires", all other researchers

and Guillaume D for his technical tips for managing the defense in video-conferencing. Merci

beaucoup. I also thank all other doctorants/postdocs met during the international conferences

Matteo Darienzo

https://forge.irstea.fr/projects/baratinage_v2
https://forge.irstea.fr/projects/bam/files
https://forge.irstea.fr/projects/bam/files


CONTENTS

(among them, my compatriots Marco DM and Andrea B).

My scienti�c skills are certainly also the results of the patience and professionalism of the

supervisors of my previous research experiences: Olivier Boutron, Marion Vittecoq (La Tour

du Valat) and Laurent Oxarango (IGE, ex LTHE). Moreover, I got some important skills in

hydrometry from my experience at SEGI Ingénierie. Merci beaucoup.

Finally, but not for importance, I deeply thank Olga for her constant support and ability to

ease the stress during these years in Lyon ("spasibo bolshoye"). Je remercie tous mes amis à

Lyon et tous ceux que j'ai rencontrés en France, ma ovviamente anche tutti i miei amici d'infanzia

in Italia con i quali ho cresciuto, e la mia famiglia sempre presente nel momento del bisogno.

Grazie in�nite.

Matteo Darienzo





RÉSUMÉ

Les séries temporelles de débit des rivières sont établies à l'aide de "courbes de tarage", qui

sont des modèles avec les hauteurs d'eau en entrée et les débits en sortie. Malheureusement,

de nombreuses stations hydrométriques ont une relation hauteur-débit instable, notamment à

cause de l'évolution du lit de la rivière lors des crues. Ces "détarages" posent problème à la

fois pour l'établissement des séries hydrologiques de long-terme (analyse rétrospective) et pour

la fourniture de données en temps réel, par exemple pour la prévision des inondations, avec des

incertitudes quanti�ées et �ables. Les méthodes existantes pour la mise à jour de la courbe de

tarage sont basées sur une analyse statistique des données de calibration (jaugeages) passées ou

sur des règles empiriques. Cette thèse a permis de développer des méthodes originales pour la

détection automatique des détarages et l'estimation de leur amplitude en rétrospectif et en temps

réel : une méthode de segmentation des résidus entre les jaugeages et une courbe de référence,

une analyse des récessions du limnigramme et une détection de détarages potentiels à partir d'un

indicateur disponible en temps réel (par exemple, transport sédimentaire cumulé). L'approche

probabiliste permet d'une part de prendre en compte l'incertitude des informations sur les dé-

tarages et d'autre part de quanti�er les incertitudes sur les débits calculés. La combinaison des

trois méthodes a été appliquée à la station de l'Ardèche à Meyras, en France, qui présente des

détarages nets après chaque crue importante. Une bonne détection et estimation des détarages

a été observée en rétrospectif et en temps réel. La méthode est générique et, après davantage de

validation, applicable en opérationnel à d'autres sites.
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ABSTRACT

River discharge time series are established using "rating curves", which are models with stage

as input and discharge as output. Unfortunately, many hydrometric stations have an unstable

stage-discharge relation, particularly because of the change in the river bed during �oods. These

"rating shifts" pose a problem both for the establishment of long-term hydrological series (retro-

spective analysis) and for the delivery of real-time data, for example for �ood forecasting, with

quanti�ed and reliable uncertainties. The existing methods for updating the rating curve are

based on a statistical analysis of past calibration data (the gaugings) or on empirical rules. This

thesis aims at developing some original methods for the automatic detection of rating shifts and

the estimation of their magnitude in both retrospective and real time: a method of segmen-

tation of the residuals between the gaugings and a base rating curve, an analysis of the stage

recessions and a method for detecting potential shifts from an indicator available in real time

(e.g. cumulative sediment transport). The probabilistic approach allows on the one hand to take

into account the uncertainty of the information on the shift and on the other hand to quantify

the uncertainties of the calculated stream�ow. The combination of the three methods has been

applied to the Ardèche at Meyras, France, which shows net shifts after each major �ood. Good

detection and estimation of the rating shift has been observed retrospectively and in real time.

The method is generic and, after further validation, operationally applicable to other sites.
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CHAPTER 1

INTRODUCTION

1.1 Context and challenges related to discharge quanti�cation

1.1.1 Monitoring stream�ow: the rating curve

River discharge, or stream�ow, is the volume of water passing through a river cross-section

per unit of time (in m3.s−1). Stream�ow time series are therefore the baseline data for

most hydrological studies. They support decision-making for the management of water re-

sources and aquatic environments and for the prevention of �ood risk, erosion and river pollution.

However, for many natural rivers, stream�ow time series are not direct observations: indeed,

stream�ow cannot be measured continuously. Instead, at some speci�c locations along the river

easily accessible and equipped for data logging (called hydrometric stations) the water level

(hereafter called "stage") is monitored with a constant frequency (e.g., every 15 minutes) or a

frequency increasing with stage variation.

Consequently, stream�ow time series are derived from the transformation of continuous mea-

surement of water level via a stage-discharge relation, called the "rating curve" [WMO, 2010;

Rantz, 1982], hereafter "RC".

1
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1.1.2 Hydraulic principles behind the rating curve

The hydraulic relation between discharge and stage is determined by hydraulic controls.

They are classi�ed into two main categories: the section controls, characterised by critical �ow

conditions induced by obstacles or change in the cross-section, e.g., natural ri�e, arti�cial weir,

and the channel controls, mainly in�uenced by the bed slope and roughness and characterised

by fairly uniform or friction-dominated �ow. For both types, elementary controls have been

extensively studied in the literature with typical formulas of the power-law form:

Q(h) = a(h− b)c (1.1)

linking the discharge Q to stage h, where a is the coe�cient related to the physical and

geometrical properties of the control (e.g., the channel width, the longitudinal slope, the

roughness), b is the o�set (with respect to the instrument measuring stage) below which the

�ow is zero, and c is an exponent related to the type and shape of the hydraulic control [Le Coz

et al., 2014]. The term h− b represents the water depth y.

In general several controls add or succeed to each other as �ow increases. As an example

of very common situations, Figure 1.1 illustrates the hydraulic con�guration proposed by

Mansanarez et al. [2019] and Sikorska and Renard [2017] for the Ardèche River at Meyras

station located in a relatively small catchment of Mediterranean France. At this gravel bed

stretch of the river the low �ows are controlled by a natural ri�e (located almost 50 m

downstream of the bridge, where stage is measured) which can be modelled as a rectangular

weir section control. The medium-high �ows are controlled by the characteristics of the main

channel which can be modelled as a wide rectangular channel control. At very high �ows, water

also �ows in the lateral �oodplain which can be modelled as a wide rectangular channel control

added to the main channel control.

Once the hydraulic con�guration has been de�ned, the RC parameters are calibrated using

some occasional stage-discharge measurements (also called "gaugings"). Unfortunately, the

gaugings are a�ected by measurement uncertainty. While the uncertainty of gauged stage is

often neglected for the RC estimation, the uncertainty of gauged discharges cannot be neglected.

Standard uncertainty values for the most frequent techniques (e.g., current meters, acoustic
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Figure 1.1: The Ardèche River at Meyras station (France), view downstream of Barutel bridge (taken

from Mansanarez et al. [2019]): a very common hydraulic con�guration.

Doppler current pro�lers ADCP, surface velocity radar and imagery analysis) have been proposed

in the literature [e.g., Le Coz et al., 2014]. As an example, for the Meyras station the gaugings,

performed by means of current meters at low, medium and high �ows and by means of radar

velocimetry at very high �ows, are a�ected by an uncertainty of ±7 % and ±10 %, respectively.1

1.1.3 Rating curve uncertainty

Estimating the parameters of the RC based on a limited number of uncertain gaugings leads

to substantial RC uncertainty. Two sources of uncertainty can be distinguished [Le Coz et al.,

2014; Kiang et al., 2018]:

- the parametric uncertainty resulting from the imperfect identi�cation of RC parame-

ters;

- the structural (also called "remnant" or "epistemic") uncertainty related to the imper-

fection of the considered RC model.

1Unless speci�ed otherwise, uncertainties expressed as ± u denote the width of a 95 % probability interval.

For instance a value x a�ected by a probability ± 10 % means that a 95 % probability interval is [0.9 x; 1.1 x].
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Figure 1.2: RC estimation with quantitative uncertainty for the Ardèche River at Meyras using the

BaRatin approach [Le Coz et al., 2014] for the period 07/11/2001 - 08/11/2006.

As an order of magnitude, the total uncertainty is typically of ± 50 − 100 % for low �ows,

± 10− 20% for medium �ows, and ±40% for out of bank �ows [McMillan et al., 2012].

The various methods for estimating the RC with quantitative uncertainty are in general

based on the regression of piecewise power functions accounting for gaugings uncertainty [Kiang

et al., 2018]. They basically di�er in:

- the assumption they made about the main sources of errors (e.g., structural error not

formally accounted for, or accounted for with a standard deviation, constant or linearly

increasing with discharge);

- the statistical tools they use (e.g. least square regression, Bayesian inference);

- the amount of hydraulic information used in addition to the gaugings (e.g., the Bayesian

approaches allow specifying informative priors on the hydraulic knowledge of the RC

parameters);

- the way they estimate the low and high �ows outside the gaugings range (e.g., by

extrapolation, or by prior speci�cation on the very low �ow control and on the �ood

Matteo Darienzo 4/174
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Figure 1.3: Schematic representation of the di�erent types of rating changes, of both transient and sudden

type (modi�ed from Herschy [1998] and Coxon et al. [2015]).

plain).

As an example, Figure 1.2 illustrates the results of the RC estimation with uncertainty for

the Meyras station by using the BaRatin method [Le Coz et al., 2014], which introduces in the

Bayesian inference the preliminary hydraulic analysis through the prior speci�cation. The �gure

does not only illustrate the most probable (maximum a posteriori) RC and the two types of RC

uncertainty, but also displays the activation stages, i.e. the stage values corresponding to the

transitions between two subsequent controls.

1.1.4 Rating changes

Unfortunately, one of the major issues a�ecting the RCs is that the stage-discharge relation

is not only uncertain but can be unstable and a�ected by rating changes over time. The rating

changes impose episodic or continuous RC updates.

Various causes lead to the RC changing in various ways, including simple translations of the
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Figure 1.4: Rating shifts a�ecting the Ardèche River at Meyras station after intense morphogenic �oods.

Modi�ed from Mansanarez et al. [2019].

whole curve to more complex modi�cations. The causes of this instability have been extensively

studied in the literature (e.g. Herschy [1998]) and some examples are illustrated in Figure 1.3.

Rating changes can be classi�ed into two main categories: transient and sudden changes.

Transient changes are caused by progressive phenomena that lead to a wide variety of

RC changes, such as sediment dynamics, hysteresis during �oods, aquatic vegetation, variable

backwater e�ect and ice sheets covering.

On the other hand, sudden changes (hereafter called rating shifts) are related to speci�c

and short events inducing net rating changes between before and after the event, such as

morphogenic �oods, relocation or modi�cation of the gauging station, operation of hydraulic

structures such as the change in the opening of sluice gates, dike/levee break, dams built by

swimmers or beavers, gravel or sand extraction from the river bed, etc.

In the case of Meyras station (Figure 1.4) the RC changes are most likely caused by sudden

vertical shifts of the gravel bed elevation. These shifts are induced by some episodic and intense
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Figure 1.5: Stage record at the Ardèche River at Meyras (France) for the period 07/11/2001 16:19 -

29/10/2018 17:45 (measured by piezometer probe and a bubbler system); 151 gaugings provided by the

hydrometric service UHPC Grand Delta for the period 07/11/2001 16:30 - 25/09/2018 10:55 are also

plotted (dots). Stars denote morphogenic �oods that are suspected to have caused a rating shift.

morphogenic �oods (evidenced with stars in Figure 1.5) after which a net vertical degradation

of the stage record is observed.

After having characterised the processes a�ecting the RC stability, the next step is to

identify the RC parameters that are more likely to vary over time. For instance processes

a�ecting width, slope and roughness of the channel induce a change in the parameter a of

the control equation (Equation 1.1), and processes a�ecting the channel elevation induce a

change in the parameter b. Instead, parameter c, which de�nes the type and the shape of the

hydraulic control, is more rarely a�ected by rating changes. Moreover, identifying the unstable

RC parameters may be very challenging also because some processes may occur simultaneously.

However, determining the nature of the change is not su�cient. The hydrologist also needs

to identify among the hydraulic controls of the station which ones are more likely a�ected. For

example in the case of morphological changes induced by �oods the low �ow section control

(e.g. natural ri�e) is in general more frequently and severely a�ected by net shifts than the

high �ow channel control. This is because the section controls are sensitive to local adjustments
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in the bed micro-topography whereas the channel controls are not. Thus, minor events may

su�ce to induce net shifts at the low-�ow controls. To induce net shifts at high �ow controls,

much greater events are required.

In the Meyras example, assuming that the channel banks have a rigid rocky composition

(Figure 1.1), the channel bottom mostly degrades or raises vertically while the channel width

remains stable. This induces mainly shifts of the o�set parameters of the low �ow controls: b1

(mean elevation of the natural ri�e crest) and b2 (mean elevation of the main channel bed).

1.1.5 Managing rating changes in real time

Tracking and estimating these rating changes in order to update the RC is of primary

importance for many operational applications, for instance for �ood forecasting, hydroelectricity,

compliance with environmental �ows and nutrient/pollutant �ux limits, administrative decisions

related to low �ows, restrictions or prohibitions on water diversion (for irrigation, etc.), shutdown

of nuclear reactors, etc. [Osorio and Reis, 2016; McMillan et al., 2017].

There is a strong interest in obtaining and communicating values of stream�ow in real

time, accompanied by quanti�ed uncertainties. This is particularly challenging at unstable

hydrometric stations, a�ected by rating changes.

In the operational practice, the main source of information to detect and estimate RC

changes is represented by the gaugings. When a gauging is far away from the last stable rating

curve then the practitioner is aware that a potential shift may have occurred. Unfortunately,

gauging campaigns are relatively costly and time consuming and can be problematic in

particular site and hydraulic conditions. Thus, in general detecting a rating shift may take

several months. During this period the o�cial RC is obsolete and the discharge values estimated

in real time by using this model might be biased.

This leads to the following questions: how to detect rating shifts as quickly as possible?

Which information other then a gauging can be used to this aim? How to manage the

uncertainty around the released stream�ow data? In real time, when rating shifts cannot be
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Figure 1.6: Flood of the Ross River in Townsville, Australia, on February 2019. Source of the photo: http:

//media.bom.gov.au/ social/ blog/ 2156/ explainer-what-is-a-�ood/ . Credit: Australian Defence Force.

quickly estimated, a solution may be to provide at least an updated uncertainty around the

RC, hence around the released stream�ow data. The next subsections describe in more details

a few practical situations where stream�ow and its uncertainty are needed in real time.

1.1.5.1 Flood forecasting and �ood risk management

River �oods (Figure 1.6) are still nowadays one of the major natural disasters all around

the world [UNDRR, 2020]. In real time the decision makers supported by the services in charge

of the hydrometric stations use forecasted stream�ow to provide reliable and timely �ood alert.

Thus, a poor stream�ow forecasting may have two types of consequences: a) it may fail to issue

a warning for a �ood event leading to potential loss of life and infrastructure; or b) it may issue

a warning for an event that does not occur, which may erode people's trusting in the forecast

and lead them to not respond to the next warning.

Two distinct sources of stream�ow information are used for real-time �ood risk management:

- the real-time observed stream�ow (directly measured at some stations or estimated through

the RC).
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- the forecasted stream�ow for the actual and next time steps, usually obtained from

hydrological rainfall-runo� models describing the water balance in the river catchement.

These models use meteorological data (rainfall, wind, temperature, etc) as input and

historic stream�ow data for the model calibration.

To reduce �ood forecasting uncertainty sources a standard practice is to assimilate the

real-time stream�ow observations into the forecasting process in order to correct the registered

deviations between the uncertain forecasted �ows and the uncertain observed �ows.

In the case of unstable rating curves the real-time analysis of stream�ow data uncertainty is

very challenging but is still necessary since it a�ects the data assimilation process and hence �ood

forecasting [Ocio et al., 2017]. During �oods in June 2016 on the Cher and Seine catchments

in France hydrometric services (the DREAL Centre-Val-de-Loire and the DRIEE Ile-de-France)

had to extrapolate and re-estimate their rating curves in emergency (the same day), especially

due to the di�erence in �oodplain vegetation between summer and winter.

1.1.5.2 Hydroelectric power plants

Hydroelectric power plants can be mainly split in impoundment facilities (where the water is

stored in a reservoir controlled by a dam and then released from the reservoir to the penstocks

containing the turbines located at a lower elevation) and run-of-river plants (with little or

no water storage, composed of a diversion structure, not necessarily a dam, that derives the

�ow destined to the turbines, example in Figure 1.7a). Both types need to carefully monitor

stream�ow in order to:

- optimise the energy production, by combining the energy price market, the energy demand

cycles and the available stream�ow diverted to the turbines (for exampleQ2 in Figure 1.7b).

- control the �oods through dam operations and to defend structures and workers from

dangerous �oods. This requires the monitoring of the incoming main stream�ow (for

example Q1 in Figure 1.7b).

- guarantee that the instream �ow released in the main channel (for example Q3 in

Figure 1.7b) respects the minimum environmental �ow (MEF) �xed by the law, to ensure
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the ecological continuity along the reach. This requires a correct and fast estimation of

this �ow in particular during droughts.

A poor real-time stream�ow estimation may lead to economical losses for the hydropower

company, to material and human losses in case of �oods, or to environmental issues during low

�ows followed by sanctions implemented after Water Authorities investigations.

(a)

Q3

Q1

Q4

POWER 
PLANT

Q2

(b)

Figure 1.7: a) Run-of-River hydropower plant along the Rhin River, at Kembs in France,

operated by EDF. Source image: https:// congress.hydropower.org/ 2019-paris/ programme/ study-tours/

study-tour-kembs-france/ . b) Schematics of a generic Run-of-River hydropower plant with upstream

main �ow Q1, derived �ow Q2, instream reserved �ow Q3, downstream �ow Q4.

1.1.5.3 Nuclear Power Plants (NPP)

As for hydropower plants all the phases of the siting, design, construction and real-

time operation of an NPP (Figure 1.8a) require accurate stream�ow estimation in order

to ensure the necessary water supply (in this case water is used for cooling the condenser

and the spent-fuel pool), to protect structures and workers against �oods, and to ensure

a minimum environmental �ow. As an example, in 2011, the NPP of Fort Calhoun in

Nebraska along the Missouri River was �ooded (Figure 1.8b) and shut down (source:

https://en.wikipedia.org/wiki/Fort_Calhoun_Nuclear_Generating_Station).

In addition to these issues the NPP needs to avoid or limit accidental pollution,

that can be thermal (the hot water released by the NPP to the main stream may
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(a) (b)

Figure 1.8: a) NPP of Tricastin, France (EDF). Source photo: https:// en.wikipedia.org/wiki/Tricastin_

Nuclear_Power_Plant. Credit: Marianne Casamance. b) Flood of Missouri River at the Calhoun NPP

in Nebraska, 2011. Source photo: https:// en.wikipedia.org/wiki/Fort_Calhoun_Nuclear_Generating_

Station. Credit: U.S. Army Corps of Engineer.

induce ecological issues, in particular on the aquatic life) and chemical (related to

the concentration and �ow of waste waters released by the NPP). The combination of

droughts induced by the precipitation de�cit and the river water overheating caused by

extreme hot weather may force some nuclear power plants to temporarily shut down. In

2018 EDF temporarily shut down three reactors in eastern France, at the Bugey NPP

upstream Lyon, at Saint-Alban NPP downstream Vienne on the Rhône River, and at the

Fessenheim NPP close to the German border (source: https://www.leparisien.fr/economie/

canicule-arret-d-un-reacteur-de-la-centrale-nucleaire-de-fessenheim-04-08-2018-7843200.php).

In conclusion both water quantity and quality need to be monitored both upstream and

downstream of an NPP. The stability of the rating curve at the hydrometric station of the NPP

needs to be frequently monitored, in particular if rating changes are suspected to occur often.

As an example, the station of the Civaux NPP on the Vienne River is frequently disrupted

by aquatic vegetation, thus it is the subject of an intensive gauging joint program by several

organizations: EDF-DTG, DREAL.
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Figure 1.9: May 2020, a tank containing diesel oil at the Nadezhda plant on the Taymyr peninsula

in the Russian Arctic, accidentally released 20 thousand tonnes of oil contaminating more than

20 km of Ambarnaya River. Source photo: https://www.greenpeace.org/ international/ story/ 43553/

oil-spill-russian-arctic/ . Credit: Greenpeace.

1.1.5.4 Accidental pollution

Sudden accidental pollution of a river may occur for several reasons: release of toxic industrial

waste water into the river, pipelines failure, rain and snowmelt run-o� from contaminated

watershed, etc.

In order to describe the transport and the dispersion of the contaminant by water, reliable

stream�ow data is essential. It is particularly important in real time for the accident forecasting

and prevention and/or the estimation of the short and long-term environmental e�ects. As an

example a recent (2020) contamination of the Ambarnaya River in Russia (Figure 1.9) by 20,000

tons of diesel oil was constantly and carefully monitored by state Authorities in order to take

actions to limit the environmental consequences.

1.1.5.5 Water-use restrictions

Real-time stream�ow data is also of primary importance for those complex systems

governed by one or more reservoirs where water resources need to be optimised for multiple

uses at the same time: e.g. irrigation (Figure 1.10a), water consumption, hydroelectricity
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(a) (b)

Figure 1.10: a) Water uptake from the river for irrigation purposes. Source photo: https:

//wmanorthamerica.weebly.com/ colorado-river.html. b) Mekong River in Thailand su�ering

from a terrible drought in the end of 2019. Source photo: https:// vietnamtimes.org.vn/

mekong-river-facing-severe-drought-amidst-serious-�ooding-in-china-21905.html.

production. Administrative decisions related to low �ows may lead to restrictions or prohibition

of withdrawals.

In France, hydrological situation bulletins have to be released every three weeks or so by

water authorities to allow for decisions on water use and allocation during drought seasons.

A severe drought in 2019 has impacted the Mekong River (Figure 1.10b), causing record

low water levels in Thailand, Laos, Cambodia and Vietnam. Lack of water had devastating

consequences for �sh, as well as the tens of millions of people living and working along the

river. Poor real-time stream�ow estimation in this case may possibly cause political con�icts on

the water management since the Mekong River �ows through several countries characterised by

di�erent water regulation laws.
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1.2 State-of-the art for the detection and estimation of rating

changes

Several methods (manual or automated) have been proposed in the literature to formally

or empirically track and estimate the magnitude of rating changes over time, as reviewed by

Mansanarez et al. [2019]. However their applicability to real-time applications is challenging

and quite limited.

The transient and sudden changes (mentioned in Section 1.1.4) require di�erent approaches.

While transient changes require dynamic modelling or continuous updates of the RC, sudden

changes require, �rstly, the detection of the shift times with the de�nition of stationarity periods

of the RC, secondly, the RC estimation for each period.

1.2.1 Dynamic modelling of transient changes

In the past, dynamic approaches have existed in the operational practice with gradual

modi�cation of the RC (called "correction curve"). These methods are time-intensive and the

applied corrections are done without considering the underlying hydraulic controls. Moreover,

the calibration of the RCs and the review of the results remain very manual, without quantifying

the uncertainties, and unsuitable for real-time management.

Bayesian methods have recently been developed to introduce some physical knowledge about

the rating changes. Reitan and Petersen-Øverleir [2011] developed a dynamic model based

on time-varying RC parameters within a hierarchical Bayesian framework. Mansanarez [2016]

proposed a method for complex ratings, including stage-fall-discharge models for twin gauge

stations a�ected by variable backwater (introducing an additional stage input variable, h2),

and stage-gradient-discharge (SGD) models to address hysteresis due to transient �ows and the

e�ect of the �ood wave propagation [Mansanarez et al., 2020].

Perret et al. [2021] developed physically-based models to account for the aquatic vegetation

dynamics (through the Strickler roughness coe�cient, which involves a modi�cation of parameter
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a of the RC). The models are calibrated using the gaugings and some qualitative information on

vegetation density through a Bayesian approach.

1.2.2 Detecting and estimating sudden changes

Several methods have also been proposed to detect the rating shifts in order to identify the

periods characterised by RC stability.

The most common practice to detect a shift is to use gaugings. Some empirical approaches

have been proposed, such as the detection of a shift when the gauging departs from the previous

RC for more than some prede�ned threshold. However these approaches do not consider the

uncertainty of both the gaugings and the RC. A more formal way to analyse the set of gaugings

is to apply a statistical analysis (segmentation) to the residuals between the gaugings and a

baseline RC, as proposed by Morlot et al. [2014] (Figure 1.11). A more detailed review on the

segmentation issue will be proposed in Chapter 2.

Another way to detect rating shift is to use the stage record, which, contrarily to

gaugings, is available in continuous and much cheaper. �apuszek [2003] demonstrated that

analysing the annual minimum stages (called H in Figure 1.12) may be of interest in order to

detect anomalies or a trend in river bed evolution. However this method is not suited to the

real time application because of its annual time step. A shift may be detected after several years.

Once the periods of validity have been de�ned, di�erent methods have been proposed in the

literature to update the corresponding RC. The "shift correction" techniques (used by USGS

and Water Survey of Canada [Rainville et al., 2016]) apply a shift s(h) to the RC o�set:

Q(h) = a(h− b− s(h))c (1.2)

These corrections allow the hydrologist to account for the hydraulic con�guration of the river

and to select (based on the expertise) the speci�c controls assumed to be a�ected by the shift.

Alternatively, the RC can be estimated by using, in a sequential way, one of the methods

mentioned in Section 1.1.3 for RC estimation with uncertainty [Kiang et al., 2018]. However,
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Figure 1.11: Top panels: segmentation procedure applied to the time series of the stage residuals computed

between the gaugings and a baseline RC [Morlot et al., 2014]. Bottom panels: associated stage-discharge

gaugings.
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Figure 1.12: Variability of annual minimum stages (H) and estimated linear trends at the Brzegi cross-

section on the Nida River [�apuszek and Lenar-Matyas, 2015].

this becomes challenging for those periods characterised by few (or no) available gaugings, which

may cause a large RC uncertainty. Thus a current practice is to re-use some gaugings from other

periods to estimate the RC of the current period, therefore assuming that the corresponding

controls are stable [Mansanarez et al., 2019]: e.g., this is typically applied to high-�ow gaugings

[McMillan et al., 2010; Puechberty et al., 2017].

A solution to this issue has been proposed by Mansanarez et al. [2019] who developed stage-

period-discharge models for estimating successive RCs and their uncertainty with a transfer of

information across periods through a Bayesian approach. In these models, RC parameters that

are suspected to shift between periods are speci�c to each period, while other parameters remain

unchanged across all periods. As an example, the application of this method to the Meyras case

study is illustrated in Figure 1.4.

1.2.3 Real-time challenges

All the traditional and emerging methods introduced in the previous subsections are usually

performed in retrospective, thus when the hydrometric data sets are fully available and when

a rating shift has already occurred. This is acceptable when the interest of the station managers
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is to perform a re-analysis of the historical hydrograph for purposes such as �ood frequency

analysis or to de�ne the instability level of a station for planning future gauging campaigns.

On the contrary, the use of the traditional methods is quite limited for real-time purposes

such as the operational applications described in Section 1.1.5, because of their dependence on

gaugings (seldom performed and very uncertain if performed during �oods) or on the stage

record but with a too long time step (year).

Detecting a rating shift (real or suspected) may be required in real time, e.g., during �oods

or soon after, without waiting for the next gaugings. To this aim, station managers use visual

control (more seldom bathymetry surveys) and all kind of information on, e.g., river works,

gravel mining operations, vegetation growth or ice jams. These methods are, in the opinion of

the operational sta� themselves, unsatisfactory, in particular because they are not formalized

and hardly reproducible but it is the best that can be done with the tools currently available.

Moreover, each type of process causing rating change is associated with a di�erent time

step. During �oods, the rating change induced by morphological change or due to hysteresis

may occur in a period of a few hours or a few days. During a period of growth of aquatic

vegetation the rating change may occur for several months with observable changes at a

daily/weekly/monthly time step. A di�erent time step may be used also depending on the

operational application. For �ood forecasting purposes or in the case of accidental pollution

the hydrometric services and water authorities may want to update the RC or at least its

uncertainty, for example, every 15 minutes or every hour during/after the event. Instead for

water restrictions during droughts a weekly/monthly time step may su�ce.

The real-time management of the RC was the initial motivation for the development of the

GesDyn method [Morlot et al., 2014] by EDF and LTHE through the PhD thesis of Morlot

[2014]. However, the real-time application could not be achieved because a new gauging is

required to trigger an RC update, with no speci�c mechanism to update the curve or its

uncertainty in between gaugings.
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Alternatively, the operational services often analyse the spatial and temporal behavior

of several stations to detect potential shifts by examining the hydrographs from correlated

stations (upstream-downstream station, station located in a tributary river or in a neighboring

catchment, etc.). A change in the regression between the stations (e.g., after a �ood) leads

to question the rating curves of the two stations [Puechberty et al., 2017]. This method is

usually based on a monthly time step, thus its applicability during �oods is limited. Moreover,

it requires the existence of a hydrologically comparable and stable station, which is never granted.

In addition, rainfall-runo� modelling is widely available and is used for real-time purposes

by operational services [Puechberty et al., 2017; Lucas, 2018]. A rating shift may be detected by

comparing the output of such models with the stream�ow obtained from the RC. The advantage

of this approach is the use of other sources of information usually available in real time (i.e.,

the inputs of the hydrological model such as precipitation, wind, temperature) and the use of a

daily time step which may be more suitable for real-time purposes.
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1.3 Objectives and outline of the manuscript

An e�cient and transparent strategy to allow real-time decision making based on stream�ow

data is to integrate in real time any potential rating shift and to provide the associated

uncertainties on the stream�ow estimation. Such a strategy may typically indicate that there

is an urgency to carry out control gaugings to con�rm/invalidate the suspected shift. It may

also lead to a large stream�ow uncertainty during the period of time when a shift is suspected

but not yet con�rmed or invalidated. Forecasters and decision-makers in particular need to

have real-time data, even if more uncertain, without gaps or delays, but they must then have

information on uncertainty to be able to make informed decisions. With this in mind, this PhD

work focuses on the issue of detecting and estimating rating shifts in retrospective as well as in

real time. In particular, the main objectives are to develop and validate:

1. tools for the detection of e�ective rating shifts using essentially the gaugings and the

stage record.

2. tools based on proxy models for the detection of potential rating shifts using the only

information always available in real time: the stage record.

3. a general real-time framework for the stream�ow quanti�cation based on the sequential

re-estimation of the RC accounting for potential shifts.

As regards the �rst objective two tools for detecting e�ective rating shifts are presented:

� An original segmentation procedure applied to the time series of the residuals computed

between the gaugings and a reference rating curve (Chapter 2). The method uses

all available gaugings to detect shifts and identify homogeneous periods. It performs a

recursive multi-change point detection and accounts for both gaugings and rating curve

uncertainties. It expresses the change point as a time rather than a position and provides

uncertainty on the change points. The text in Chapter 2 is a slightly modi�ed version

of the article "Detection of Stage-Discharge Rating Shifts Using Gaugings: A Recursive

Segmentation Procedure Accounting for Observational and Model Uncertainties" published

in Water Resources Research journal [Darienzo et al., 2021].
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� An original stage-recession analysis to detect changes in the recession shape over time

(Chapter 3). The method aims at detecting and estimating step changes in the river bed

elevation using the stage record as an input. It is based on: the extraction of all available

recessions; the estimation of a recession model through a Bayesian approach; the detection

of shifts in speci�c parameters of the recession model over time. The text in Chapter 3 is

also written as a journal article that will be submitted shortly.

As regards the second objective, Chapter 4 describes a tool for detecting potential rating

shifts caused by morphological changes during �oods. The tool is based on a sediment transport

proxy analysis and is of particular interest for real-time applications. Using the stage record, it

computes a cumulative bed load estimate for each �ood event in order to identify the events

more likely to cause a net river bed change.

The third objective of this PhD work will be treated inChapter 5 by discussing the results of

a �rst proof-of-concept application of a real-time stream�ow estimation framework. In particular,

the real-time framework requires:

� One tool for estimating the RC estimation and its uncertainties. In this manuscript the

Bayesian approach (and in particular the BaRatin method [Le Coz et al., 2014]) will be

preferred because of its ability to include in the statistical inference the physical knowledge

of the rating shift through the prior speci�cation of RC parameters).

� At least one tool for detecting and estimating rating shifts in a real-time context, and thus

capable of providing a continuous information about the RC stability. This tool needs to

be calibrated and validated through a retrospective analysis that consists in detecting and

studying all past rating shifts.

The general perspectives for future work including possible improvement, potential

operational application of the tools proposed in this manuscript, and the �nal conclusions will

be presented in Chapter 6.
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CHAPTER 2

SEGMENTATION OF GAUGINGS

This chapter is a slightly modi�ed version of the article "Detection of Stage-Discharge Rating

Shifts Using Gaugings: A Recursive Segmentation Procedure Accounting for Observational and

Model Uncertainties" published in Water Resources Research [Darienzo et al., 2021], doi: https:

//doi.org/10.1029/2020WR028607.

Abstract

The stage-discharge rating curve is subject at many hydrometric stations to sudden changes

(shifts) typically caused by morphogenic �oods. We propose an original method for estimating

shift times using the stage-discharge observations, also known as gaugings. This method is

based on a recursive segmentation procedure that accounts for both gaugings and rating curve

uncertainties through a Bayesian framework. It starts with the estimation of a baseline rating

curve using all available gaugings. Then it computes the residuals between the gaugings and this

rating curve with uncertainties. It proceeds with the segmentation of the time series of residuals

through a multi change point Bayesian estimation accounting for residuals uncertainties. Once

a �rst set of shift times is identi�ed, the same procedure is recursively applied to each sub-

period through a "top-down" approach searching for all e�ective shifts. The proposed method

is illustrated using the Ardèche River at Meyras in France (a typical hydrometric site subject
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to river bed degradation) and evaluated using several synthetic data sets for which the true

shift times are known. The applications con�rm the added value of the recursive segmentation

compared with a "single-pass" approach and highlight the importance of properly accounting

for uncertainties in the segmented data. The recursive procedure e�ectively disentangles rating

changes from observational and rating curve uncertainties.

Plain Language Summary

For many hydrological and hydraulic issues, such as �ood forecasting, a reliable river discharge

estimate is needed. In general discharge is derived from the recorded water level (stage) through

a stage-discharge relation (rating curve). This relation is calibrated using direct observations

(gaugings). Unfortunately the rating curve is not only uncertain but it can also be subject to

sudden changes or shifts due for example to intense �oods that modify the river bed geometry.

One solution to identify periods of rating curve stability is to apply a segmentation procedure

to the gaugings. We propose in this paper an original recursive segmentation procedure that

accounts for both gaugings and rating curve uncertainties.
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2.1 Introduction

2.1.1 Rating curves

River discharge, or stream�ow, is one of the most important variables in hydrology and

hydraulics. Hydrometric data are essential for the calibration of hydrological models, �ood

forecasting and warning, engineering design (of dam and bridges for example) and policy

decisions related to water resources and environmental management. However, stream�ow time

series are not direct observations as stream�ow cannot generally be continuously measured

in natural rivers. Instead, the water level (also called "stage") is continuously monitored.

Stream�ow time series is hence derived from rating curves [WMO, 2010; Rantz, 1982], hereafter

called "RCs", which are models transforming an input stage into an output discharge. These

models are estimated using occasional stage-discharge measurements (also known as gaugings)

and hydraulic constraints. The physical relation between discharge and stage is determined by

hydraulic controls, that is, physical characteristics of the river section or channel in�uencing the

�ow: geometry, friction, longitudinal slope, head losses, etc. A hydraulic analysis of the site,

through �eld expertise or modelling, allows identifying the succession or addition of hydraulic

controls as �ow increases [Le Coz et al., 2014].

RCs are a�ected by many sources of uncertainty, including structural uncertainty

(imperfection of the RC model), gaugings measurement uncertainty, and parametric uncertainty

(estimation of RC parameters). Several methods for quantifying RC uncertainty have been

developed as recently reviewed by Kiang et al. [2018]. Unfortunately, the stage-discharge

relation can be unstable and a�ected by rating changes. When ignored, these changes may be

the main source of RC uncertainty [Ibbitt and Pearson, 1987]. Concerning the causes of this

instability, it is useful to distinguish between transient and sudden rating changes. Transient

changes are caused by progressive phenomena [Herschy, 1998] such as hysteresis in unsteady �ow

during �oods (rising limb and falling limb have di�erent discharge values for the same stage),

variable backwater due to unsteady downstream boundary conditions (e.g., stage controlled by

a reservoir, sea tidal e�ect), growth and decay of aquatic vegetation, evolution of ice sheets

covering cold-water rivers, river bed evolution due to sediment dynamics with progressive scour
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and �ll. On the other hand, sudden changes (shifts) are related to speci�c and occasional events

such as morphogenic �oods, dike breaks, dams built by swimmers or beavers, etc.

The next sections review the methods proposed in the literature to estimate the magnitude

of rating changes and therefore to track the variability of RCs in time. The aforementioned

transient and sudden changes require di�erent approaches.

2.1.2 Detecting and modelling transient changes

Modelling transient changes requires dynamic approaches. Such methods have actually

existed in the operational practice since the beginning of the 20th century at least, in the

form of time-varying RCs accounting for gradual rating changes. Schmidt [2002] described

the Stout's method (circa 1900) based on gradual daily shifts estimated from the gaugings. The

same author also described the similar Bolster's method (circa 1910) which interpolates gaugings

every day and develops parallel rating curves. Recently, Westerberg et al. [2011] and Guerrero

et al. [2012] proposed to estimate RCs on moving temporal windows containing 30 successive

gaugings. Morlot et al. [2014] proposed to compute as many RCs as there are gaugings and

introduced the concept of RC aging: following an RC update, uncertainty increases with time

according to a variographic analysis [Jalbert et al., 2011]. Reitan and Petersen-Øverleir [2011]

developed a dynamic model based on time-varying RC parameters within a hierarchical Bayesian

framework. Finally, in the speci�c context of sites a�ected by aquatic vegetation, Puechberty

et al. [2017] proposed time-varying stage corrections and Perret et al. [2021] introduced the

Bayesian estimation of a time-dependent rating curve model accounting for vegetation growth

and decay, with year-speci�c parameters.

2.1.3 Detecting sudden changes

As rating changes often result from episodic morphogenic �oods, models assuming sudden

rating changes between stability periods are more widespread than dynamic models in the

operational practice. This approach requires solving two main issues: detecting changes (which

includes estimating shift times), and estimating the successive stable RCs with their associated

uncertainties. In this paper we will focus on the �rst issue only. We refer the reader to
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Mansanarez et al. [2019] for a review on the second issue.

Several methods exist for sudden rating change detection. The most common approach is

arguably to use gaugings. For instance, an empirical rule [WMO, 2010] prescribes to start a

new period (and hence a new RC) when a gauged discharge departs from the current RC by

more than some prede�ned threshold, or when successive gauged discharges are systematically

above or below the current RC. This rule varies across agencies and site conditions, for instance:

±5 % of discharge or ±0.6 cm (±0.02 ft) in stage for low-�ow controls for the USGS [Rantz,

1982]; ±5 % of discharge for the Water Survey of Canada [Rainville et al., 2016]; ±10 %

of discharge and/or ±2 − 3 cm in stage in France [Puechberty et al., 2017]. While easy to

apply, this approach is based on empirical rules and ignores both gaugings and RC uncertainties.

In addition, operational services monitor the evolution of the river bed elevation to detect

a change in the corresponding RC parameter. They use �eld observations such as information

about river works, gravel mining operations and bathymetry surveys. It is also possible to

install submersible pressure transducers at various locations along the reach [Phillips and Eaton,

2009]. An observed drastic drop or raise in the stage record may indicate a sudden river bed

change. Moreover, �apuszek and Lenar-Matyas [2015] evaluated whether changes in the annual

minimum stages may indicate changes of the river bed level. This method is useful to provide a

trend of the river bed evolution, but due to its annual resolution it cannot precisely identify the

dates of rating shifts. Alternatively, McMillan et al. [2010] proposed to arbitrarily select the

0.5-year return period discharge as a threshold triggering a new RC period.

Furthermore, some operational services perform correlation analyses with reference stable

discharge time series (e.g., the output of a hydrological model, or a discharge time series from

a stable and well gauged neighboring station). Changes in the correlation structure may be

indicative of rating shifts.

Finally, a formal way to detect changes by using gaugings is to apply a segmentation

procedure to the time series of residuals between the gaugings and a time-invariant RC in order

to identify homogeneous families of gaugings, as done for instance by Morlot et al. [2014]. This
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paper focuses on this approach.

2.1.4 Change point detection methods

The problem of �nding abrupt changes in a time series is known in the literature as Change

Point Detection (CPD). Reviews of the most representative methods have been proposed by

many authors, such as Basseville and Nikiforov [1993]; Ducré-Robitaille et al. [2003]; Keogh

et al. [2003]; Jandhyala et al. [2013]; Aminikhanghahi and Cook [2017].

A distinction can be made between single (sCPD) and multiple (mCPD) change point

detection methods. sCPD methods are based on statistical tests questioning the existence of one

single change a�ecting typically the mean or the median of the series, sometimes higher moments

as well. The literature proposes several methods, e.g. likelihood-ratio tests [Hinkley, 1970;

Chen et al., 2006; Chen and Gupta, 2012], non-parametric tests [Wilcoxon, 1945; Pettitt, 1979;

Kruskal and Wallis, 1952; McGilchrist and Woodyer, 1975], �Standard Normal Homogeneity�

tests Hawkins [1977]; Alexandersson [1986], and Bayesian procedures [Cherno� and Zacks, 1964;

Lee and Heghinian, 1977; Booth and Smith, 1982; Perreault et al., 1999, 2000a,b].

Alternatively, mCPD methods look for multiple change points in the series. Unlike sCPD,

mCPD is a�ected by a combinatorial challenge induced by the large number of possible change

point positions. The Binary Segmentation or BS [Scott and Knott, 1974] recursively performs

sCPD until no more changes are detected in any of the obtained segments. However this

approach is prone to known issues such as premature termination (schematized in Figure 2.1a)

and mislocated splits (Figure 2.1b). To overcome these issues, several options are available:

e.g. the Circular BS method proposed by Olshen et al. [2004], sequential methods [Page,

1954; Hubert and Carbonnel, 1987; Hubert et al., 1989], Dynamic Programming [Auger and

Lawrence, 1989; Killick et al., 2012], Bayesian inference [Green, 1995; Chib, 1998; Lavielle and

Lebarbier, 2001] or Hidden Markov Models [Cappé et al., 2005; Luong et al., 2012].

However, these methods lack �exibility in the treatment of uncertainties a�ecting the

segmented data. Indeed, the total uncertainty a�ecting RC residuals is induced by both

gaugings and RC uncertainties. This uncertainty is not only potentially large, but it may
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Figure 2.1: Schematic illustration of typical segmentation pitfalls:

(a) premature termination in Binary Segmentation: no single change point model provides a reasonable

�t to the data and BS therefore stops at the �rst iteration, with no change detected;

(b) mislocated split in Binary Segmentation: optimal single change point is in the middle of a stable

period;

(c) neglecting versus accounting for data uncertainties;

(d) artifact induced by residual rescaling: while raw residuals with standard deviation close to zero lead

to rescaled residuals with high absolute values, highly uncertain residuals are sent to zero by the rescaling,

thus creating a spurious period.
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also strongly vary from point to point. This should be accounted for in the segmentation

procedure, as illustrated in the conceptual example of Figure 2.1c: ignoring data uncertainty

clearly suggests three periods, while recognizing that two points have a much larger uncertainty

than the others suggests a single period may su�ce. An option is to consider rescaled residuals

instead of absolute residuals (e.g. dividing the absolute residuals by the standard deviation

representing their uncertainty). However in some cases this rescaling might create spurious

periods as illustrated in Figure 2.1d.

Furthermore, mCPD methods attempt to detect all changes in a given data set. In the

context of RC shifts, this data set is derived using a baseline RC �tted to all gaugings, which

may be a very poor representation of the stage-discharge relation. The large scatter and

uncertainty of residuals may hide smaller changes that may be missed by such �single-pass"

procedure. A recursive procedure, re-estimating the RC on each sub-period and deriving

updated data sets of RC residuals, may hence be of interest.

Finally, the estimated change points provided by mCPD methods are not well-adapted to

the context of RC shifts for the following reasons: (i) they are expressed in terms of position (i.e.

observation index) rather than time, which is not ideal for irregular data such as gaugings; (ii) the

uncertainty around the change point positions is rarely quanti�ed. Nam et al. [2012] underlined

the importance of accounting for the uncertainty of change point estimates. Estimating change

points in terms of uncertain shift times would be useful to look for speci�c events that may have

caused the change - e.g. a large �ood that would typically occur in between gaugings.

2.1.5 Objectives of the paper

The main objective of this paper is to propose an original method for the detection of rating

shifts through the segmentation of residuals between the gaugings and a baseline RC. The method

must:

1. account for uncertainties in segmented data.

2. recursively re-estimate the baseline RC and apply the segmentation on each sub-period to

reveal minor changes.
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3. express change points in terms of time (rather than position), along with their uncertainty.

The structure of the paper can be summarized as follows. Section 2.2 describes the proposed

method. In Section 2.3, this method is applied to a typical hydrometric station with the aims

of illustrating the main properties of the method and introducing several possible variants.

Section 2.4 then describes a more thorough evaluation of the method's performance based on

synthetic data sets where change points are known. Section 2.5 discusses results and proposes

future perspectives. Finally, Section 2.6 summarizes the main �ndings.
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2.2 The proposed method for rating shift detection

2.2.1 Overview

Figure 2.2 illustrates in a schematic way the algorithm of the proposed method. The main

steps are listed below and detailed in the next subsections.

1. Estimation of the baseline RC and its uncertainty using all available gaugings

(Section 2.2.2).

2. Computation of the residuals between the gaugings and the baseline RC, and their

uncertainties. (Section 2.2.3).

3. Multiple change point detection applied to the residuals time series (Section 2.2.4) and

choice of the optimal number of change points (Section 2.2.5).

4. Shift times adjustment (Section 2.2.6).

5. �Top-down� recursion: re-apply steps 1-4 to each period until no more changes are detected

(Section 2.2.7).

2.2.2 Estimation of the baseline rating curve

The �rst step of the proposed method is to estimate the baseline RC and its uncertainty using

all gaugings. Since one of the basic objectives of this paper is to account for both gaugings and

RC uncertainties, it is necessary to select an RC estimation method that provides quantitative

uncertainties (see Kiang et al. [2018] for a review of such methods). In this paper the BaRatin

method [Le Coz et al., 2014] is used for convenience. We refer to the aforementioned paper for

a more detailed description and we stress that any other method could be used, as long as it

provides the uncertainty around the RC.

2.2.3 Computation of residuals and their uncertainty

The residuals between the gaugings and the RC are de�ned as follows:
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Figure 2.2: a) Conceptual �owchart of the proposed algorithm. b) Schematic representation of the iterative

procedure. Each iteration consists in the succession of Steps 1-4 described in Section 2.2. Colored ribbons

and error bars represent 95% uncertainty intervals for RCs (pink), shift times (blue), gaugings (black

dots) and residuals (empty dots).
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ri = Q̃i − Q̂i i = 1, ..., N (2.1)

where Q̃i is the gauged discharge, Q̂i is the RC-estimated discharge and N is the number

of gaugings. Each residual is a�ected by two sources of uncertainty. The �rst one is the

measurement uncertainty a�ecting the observed discharge Q̃i, which does not depend on the

RC method and should ideally be determined by an uncertainty analysis of the measurement

process. Assuming zero-mean Gaussian measurement errors, this uncertainty can be quanti�ed

by the standard deviation u
Q̃i
. By contrast, the uncertainty a�ecting the RC discharge Q̂i is

obviously dependent on the RC method being used. The BaRatin method used in this paper

assumes zero-mean Gaussian RC errors with standard deviation u
Q̂i

= γ1 + γ2Q̂i, where γ1 and

γ2 are estimated as part of the RC estimation process. We reiterate that any other RC method

could be used as long as it provides an uncertainty u
Q̂i
.

Further assuming that measurement and RC errors are independent, the combined standard

uncertainty a�ecting residuals ri is equal to:

uri =
√
u2
Q̃i

+ u2
Q̂i

i = 1, . . . , N (2.2)

2.2.4 Segmentation model and Bayesian inference

The third step of the proposed method is the mCPD of the time series of residuals (ti, ri)i=1...N

through the Bayesian estimation of a segmentation model.

2.2.4.1 General segmentation model

Generally speaking, a segmentation model can be viewed as a piece-wise constant model of

the form:

ri = r̂i + εi (2.3)
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r̂i =



µ1 , t1 ≤ ti < τ1

µ2 , τ1 ≤ ti < τ2

...

µK , τK−1 ≤ ti ≤ tN

(2.4)

In Equation 2.4, K is the known number of segments; it will be selected based on a model-

selection procedure described in the following section 2.2.5. The means µj of each segment

j and the change point τj that separate segment j from segment j + 1 are unknown and are

grouped into the vector of inferred parameters θ = (µ1, ..., µK , τ1, ..., τK−1). The treatment of

segmentation errors εi depends on how these errors are interpreted: it is a key focus of this

paper, and two distinct approaches will be presented in the next section. Finally, it is noted

that many segmentation models in the literature use the observation index i rather than the

time ti. We favor the latter option because it will allow expressing uncertainties on the change

point in terms of time rather than position, which is particularly useful in the RC context where

gaugings are performed irregularly.

2.2.4.2 Two approaches for describing segmentation errors

Segmentation errors εi are generally assumed to be realisations from a zero-mean Gaussian

distribution. The two approaches considered here di�er in the way they treat their standard

deviation σi:

1. Type-1 approach: σi is assumed to be unknown but identical for all segmented data, i.e.

σi = σ

2. Type-2 approach: σi is assumed to be known but to vary between segmented data, i.e.

σi = uri

Type-2 approach is particularly suitable for cases where the segmented data ri are RC

residuals (or more generally, residuals between a model and observations): indeed, Equation

2.2 provides the known standard deviation uri to be used in this case. Type-1 approach is
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arguably the most standard procedure, since it corresponds to the assumption made in standard

regression models with homoscedastic errors. However, it ignores the uncertainty a�ecting the

segmented data, despite the fact that it is known before applying the segmentation procedure.

2.2.4.3 Bayesian estimation

Assuming that segmentation errors εi are independent, the likelihood associated with the

segmentation model can be written as follows:

Type-1 approach: p (r|θ, σ) =
N∏
i=1

φ (ri|r̂i(θ), σ)

Type-2 approach: p (r|θ) =
N∏
i=1

φ (ri|r̂i(θ), uri)

(2.5)

where φ (z|m, s) is the probability density function (pdf) of a Gaussian distribution with mean

m and standard deviation s, evaluated at value z.

Bayesian inference requires specifying the prior distribution of parameters (θ, σ).

Independent priors are speci�ed for each inferred parameter. By default a uniform prior

distribution is speci�ed for each change point, τj ∼ U(t1, tN ). Note that on top of this

prior distribution, change points are also constrained by the relation τ1 < · · · < τK−1. An

order-of-magnitude Gaussian distribution is speci�ed for each segment mean, µj ∼ N (0, 10m);

the value of m is case-speci�c and should re�ect the expected order of magnitude of RC

residuals, which in turn is speci�c to the studied catchment.

Bayes' theorem allows combining the information brought by the data through the likelihood

with the prior information on the inferred parameters into a posterior distribution of the

parameters, whose pdf is de�ned by:

Type-1 approach: p (θ, σ|r) ∝ p (r|θ, σ) p (θ, σ)

Type-2 approach: p (θ|r) ∝ p (r|θ) p (θ)

(2.6)

A MCMC approach based on a multi-block Metropolis algorithm is used to explore this

Matteo Darienzo 36/174



2.2. The proposed method for rating shift detection

multidimensional posterior distribution. The variance of each parameter jump distribution

is also adapted during iterations in order to reach an user-de�ned acceptance rate. The

implemented algorithm is detailed in Renard et al. [2006]. By default the �rst half of the

simulations is ignored (�burned�) and only the second half of simulated values is used for

inference. MCMC convergence is assessed by visually inspecting trace plots and density plots

(except in the synthetic case studies of Section 2.4 where this is not feasible given the large

number of replications). In addition, the Potential Scale Reduction Factor Brooks and Gelman

[1998] is computed for each parameter, verifying that it is smaller than 1.2.

Finally, to avoid short segments containing no observations, which may lead to an ill-posed

inference, additional constraints can be enforced: a minimum number of points Nmin ≥ 1 for

each segment and a minimum duration dmin ≥ 0 between two consecutive change points. These

constraints are case-speci�c and user-de�ned.

2.2.5 Choice of the optimal number of segments

The number of segments K is selected by minimizing the Deviance Information Criterion

(DIC, Spiegelhalter et al. [2002]), in the formulation suggested by Pooley and Marion [2018].

The DIC is selected because it is adapted to the Bayesian estimation described in Section 2.2.4.3.

We note that a maximum-likelihood estimation could also be used and possibly favored by some

users. In this case, the DIC should be replaced by an alternative model-selection criterion such

as the Akaike Information Criterion (AIC, Akaike [1974]), the Bayesian Information Criterion

(BIC, Schwarz [1978]), or the Hannan-Quinn information Criterion (HQC, Hannan and Quinn

[1979]).

Let Θ denote the vector of all inferred parameters, i.e. Θ = (θ, σ) for the type-1 approach

(Npar = 2K) and Θ = θ for the type-2 approach (Npar = 2K − 1). Moreover, let D(Θ) denote

the deviance de�ned as D(Θ) = −2 ln (p (r|Θ)). The four criteria discussed above are computed

as follows:
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AIC = D(Θ̂) + 2Npar

HQC = D(Θ̂) + 2Npar ln(ln(N))

BIC = D(Θ̂) +Npar ln(N)

DIC = E [D(Θ)] +
1

2
Var [D(Θ)]

(2.7)

In the �rst three criteria, Θ̂ is the maximum-likelihood parameter estimate. In the fourth

criterion DIC, E [.] and Var [.] represent the posterior mean and variance, and the corresponding

quantities can easily be computed using MCMC samples.

2.2.6 Adjustment of shift times

Bayesian estimation results provide the marginal posterior distribution of each inferred

parameter. Rating shift times s = (s1, . . . , sK−1) can be obtained from the posterior

distributions of parameters τ .

As illustrated in Figure 2.3, each posterior distribution provides a point estimate τ̂j and a

credibility interval CIj . Typically, τ̂j is the Maximum A Posteriori (MAP) estimate maximizing

the posterior density. The interval CIj can be explored to �nd a physically-justi�ed shift time.

The following three options can be considered for instance:

1. sj = τ̂j can be used as a default option.

2. If the stage record is available, sj can be set to the time of the largest stage value within

CIj (cf. Figure 2.3), reasoning that a large �ood is a likely cause of the shift.

3. sj can also be set manually within CIj using any other information on possible causes of

the shift (e.g., gravel mining operations, beavers/swimmers dams, works in the river bed,

earthquake).
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Figure 2.3: Example of shift time adjustment options. Instead of setting the shift time to the MAP

estimate τ̂1, a better option may be to choose the time of the maximum stage tflood,1 within CI1.

2.2.7 Recursive segmentation

Once a �rst set of shift times has been identi�ed, a recursive �top-down" procedure is

performed (Figure 2.2). The segmentation procedure described in the previous sections (2.2.2

to 2.2.6) is recursively performed within each sub-period. At each iteration only the gaugings

of the current sub-period are considered. The iterations stop when within all periods no more

shift times are detected.

It may happen that at some iteration of the recursive segmentation only few gaugings are

available. This may lead to challenging RC estimation and, if the BaRatin method is used,

to challenging quanti�cation of u
Q̂i
. When moving from one period to its sub-period, a better

�t and hence a smaller standard deviation u
Q̂i

is expected; thus a prior uniform distribution

between zero and the posterior mean of the parent period is speci�ed for u
Q̂i
.
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2.3 Application to a real case study: the Ardèche River at

Meyras, France

2.3.1 Presentation of the station

The Ardèche River at Meyras station is located in Mediterranean France, with a catchment

area of 98 km2. This station is characterized by a gravel bed degrading during each important

�ood. It has been already studied by Le Coz et al. [2014], Sikorska and Renard [2017] and

Mansanarez et al. [2019]. They all proposed a three-control hydraulic con�guration: a section

control governed by a natural ri�e for low �ows, a main channel control for medium �ows and

one �oodway channel control added to the main channel for very high �ows. The stage record

is available for the period between 07/11/2001 and 29/10/2018. Gaugings and comments about

shift times have been provided by the hydrometric Service in charge of the station (UHPC Grand

Delta).

2.3.2 Segmentation strategies

Several segmentation strategies are used in order to compare �single-pass" vs. recursive

procedures and type-1 vs. type-2 treatment of segmentation errors:

A �Single-pass" mCPD method from the literature. The R function cpt.mean of the

changepoint package Killick and Eckley [2014] is used with the following options: (i)

maximum number of segments K = 30; (ii) change in the mean only; (iii) Binary

Segmentation method Scott and Knott [1974]; (iv) Normal statistic test; (v) BIC selection

of K; (vi) minimum number of data in a segment Nmin = 1. Note that in this method,

the segmentation model of Equation 2.4 is expressed in terms of observation index i

rather than time ti, and does not provide uncertainty on the change point. Consequently,

each change point τk is assumed to be uniformly distributed between times tik (the time

associated with the k − th detected change point) and tik−1. The shift times are then

adjusted (Section 2.2.6) on the largest stage value within this interval.

B �Single-pass" mCPD method proposed in this paper with a type-1 treatment of
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segmentation errors (i.e., unknown but constant uncertainty). The following options

are chosen: (i) maximum number of segments K = 30; (ii) DIC selection of K; (iii)

minimum number of data in a segment Nmin = 1; (iv) minimum duration of a segment

dmin = 0 days. This approach is very similar to the previous Strategy A, except that the

segmentation model of Equation 2.4 is expressed in terms of time ti. Shift time adjustment

is therefore applied by looking for the largest �ood in the 95% credibility interval of the

change point, as described in Section 2.2.6.

C Recursive mCPD method proposed in this paper with a type-1 treatment of segmentation

errors (i.e., unknown but constant uncertainty). The maximum number of segments is now

set to 5 because by using a recursive procedure, there is no requirement to �nd all changes

during the �rst pass. All other options are identical to approach B.

D Recursive mCPD method proposed in this paper with a type-2 treatment of segmentation

errors (i.e., known residuals uncertainties). All options are identical to approach C.

2.3.3 Results with Strategy D

Figure 2.4 shows the results of some signi�cant steps of Strategy D. The structure and the

enumeration of the iterations are schematised in Sub�gure 2.4a. Seven shift times are detected

in thirteen iterations. Panels (2.4b-2.4d) zoom to the intermediate results of iterations 0, 1.2, 1.3.

For each iteration Figure 2.4b shows the RC estimated using gaugings from the current

period. At iteration 0 the baseline RC has a large uncertainty, con�rming the presence of

multiple stage-discharge relations for this data set. This uncertainty decreases in subsequent

iterations, re�ecting the fact that the RC is estimated using more homogeneous gaugings.

Figure 2.4c shows the evolution of four criteria (AIC, BIC, HQC and DIC) for the choice of

the optimal segmentation (see Section 2.2.5). A similar behavior is observed between BIC, DIC

and HQC, in particular between BIC and DIC. On the contrary AIC tends to favor a higher

number of periods for the iterations shown in the �gure and for other iterations (not shown).

Figure 2.4d shows the segmented residuals. These three iterations illustrate the added value
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Figure 2.4: Strategy D applied to the gaugings of the Ardèche River at Meyras. Sub�gure (a): structure

of the recursion. Sub�gures (b): baseline RC using the gaugings of the current period. Sub�gures (c):

evolution of four criteria for the selection the optimal segmentation applied to the residuals. Sub�gures

(d): results of the segmentation considering the lowest DIC.
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of the �top-down" recursion: the large RC uncertainty at iteration 0 leads to the detection of

two major shifts only; then iterations 1.2 and 1.3 lead to the detection of other minor shifts

based on re�ned RCs. Iteration 1.3 also illustrates that, because of the uncertainty in the

estimated change point location, the adjusted shift time (based on �ood occurrence) may be far

from the optimal time identi�ed using gaugings only.

Finally, by the last iterations, segmentation errors (εi in Equation 2.3) do not generally

exhibit any signi�cant autocorrelation (not shown).

2.3.4 Comparison of Strategies A-D

The results of the four strategies are then summarized in Figure 2.5 in terms of detected shift

times against the stage record. The o�cial dates of RC updates are provided by the hydrometric

Service SPC Grand Delta and are con�rmed by the analysis proposed by Mansanarez et al.

[2019]. Only Strategy D shows results similar to the o�cial segmentation. However the o�cial

dates cannot be considered as a �truth" against which the performance of competing methods

can be judged. Comparing the results of Strategies A-B-C-D may still be insightful.

The �rst striking observation is that the four Strategies lead to markedly di�erent

segmentations, in particular between Strategy D and Strategies A, B, C.

While both Strategies C and D are recursive, they lead to very di�erent numbers of shifts

(42 detected in 56 iterations vs. 7 detected in 13 iterations). This indicates that the treatment

of segmentation errors (type-1 vs. type 2) is of prime importance.

Strategies A and B are both non-recursive, and di�er in the following two aspects: Strategy

A is index-based while B is time-based; they use a di�erent criterion for selecting the number of

shifts. Both strategies lead to very similar results in terms of number of shifts (27 vs. 29) and

their location. The slight di�erences may be due to the stronger penalty term of the BIC or to

Binary Segmentation issues as illustrated in Figure 2.1a-b.

Strategies A, B and C lead to many more change points than Strategy D. During the �rst
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Figure 2.5: Results of the segmentation procedure applied to gaugings of the Ardèche River at Meyras,

France. Gaugings are plotted against the stage record with a di�erent color for each period of RC stability

identi�ed by Strategy D. For each strategy, results are presented as posterior pdf of τj (blue ribbons) and

adjusted shift times sj (red segments).
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period (red gaugings) the detected shifts correspond to the largest gaugings. This might suggest

that the shifts result from the much larger uncertainty a�ecting these residuals (which cannot

be accommodated with the constant-sigma type-1 approach), rather than from a genuine change

in the underlying RC. This evidences the problem illustrated in Figure 2.1c-d.

However the objective choice of the most e�cient segmentation strategy is challenging

without knowing the true shift times. In the next section, the model selection criteria and

the segmentation strategies are compared based on synthetic data with known shift times and

magnitudes, thus enabling a more objective evaluation of their performance.
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2.4 Performance evaluation from simulated rating shifts

2.4.1 Generation of synthetic data

The generation of synthetic gauging data is based on the following steps (the corresponding

R code is also provided as online material):

1. Select the length of the studied period [0;T ] (in years).

2. Shift times: generate inter-shift durations from an exponential distribution with rate λs

(e.g. λs = 1/5 corresponds to 1 shift every 5 years on average); shift times are then derived

as the cumulative sum of the inter-shift durations. The generation stops when the shift

time exceeds T , leading to Ns shifts.

3. Shift magnitudes: it is assumed that RC shifts only a�ect the o�set of the lower control

(i.e. the b in equation Q = a(h − b)c). Each shift magnitude δb(i) is generated from

a Gaussian distribution with mean 0 and standard deviation σb. If there exists at least

one shift, for each stable period j (j ≥ 2), the o�set parameter b(j) is hence equal to

b(j) = b(1) +
∑j

i=2 δb
(i).

4. Gauging times: use the same approach as for shift times, using a rate λg leading to Ng

gaugings.

5. Gauging true discharge: for each gauging, the true discharge Qi is generated by �rst

sampling a non-exceedance probability p between 0 and 1, then transforming it into

discharge using the quantile function of a LogNormal LN (ln(50), 0.5) distribution.

Probability p is sampled from a beta distribution B(0.1, 0.9) which is strongly skewed

toward zero, mimicking the typical situation where gaugings are mostly performed during

low �ows.

6. Gauged stage: for each gauging, the stage hi is computed by applying the inverse RC

function to the true discharge Qi.

7. Gauged discharge: for each gauging, the gauged discharge is obtained by adding a

measurement error ξi to the true discharge Qi. ξi is sampled from a Gaussian distribution

with mean 0 and standard deviation ρi ×Qi.
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Table 2.1: Classes of simulation for the performance evaluation.

Class
Frequency

of gaugings

Frequency

of shifts

Mean number of

gaugings/period

Shift

st.dev.

Gauging error Number of

controlsLow �ows High �ows

λg (year
−1) λs (year

−1) λg/λs σb (m) ρLF (%) ρHF (%) Nc

1 2 1/5 10 0.5 2.5 5 1

2 4 1/5 20 0.5 2.5 5 1

3 7 1/5 35 0.5 2.5 5 1

4 10 1/5 50 0.1 2.5 5 1

5 10 1/5 50 0.3 2.5 5 1

6 10 1 10 0.5 2.5 5 1

7 10 1/2 20 0.5 2.5 5 1

8 10 1/5 50 0.5 2.5 5 1

9 10 1/5 50 0.5 10 15 1

10 10 1/5 50 0.5 2.5 5 3

2.4.2 Design of experiments

In order to assess how the properties of the data set impact the performances of the

segmentation approaches, several classes of simulation are de�ned as described in Table 2.1.

Each class is characterised by �xed values of the parameters described in Section 2.4.1.

Comparing these classes allows assessing the impact of the following Properties:

� P1: number of hydraulic controls Nc (classes 8 and 10).

� P2: mean number of gaugings per period, which is equal to the ratio between the gaugings

frequency λg and the shifts frequency λs (classes 1, 6, 2, 7, 3, 8), as suggested by Ibbitt

and Pearson [1987].

� P3: uncertainty in gauged discharges as controlled by ρLF and ρHF (classes 8 and 9).

� P4: shift magnitude as controlled by σb (classes 4, 5 and 8).

For each class, 10 replications are generated, for a total of 100 simulations (some data sets

are reported in Figure 2.6). To minimize computational cost all data sets are generated with

a maximum number of 150 gaugings and a maximum number of 15 true shift times within a
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Figure 2.6: Examples of synthetic data sets characterised by known rating shift times using parameters

of Classes 1-3-4-6-9-10 de�ned in Table 2.1.
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period of 15 years. As an order of magnitude, the CPU time to apply approach C to one data

set with 54 gaugings is around 50 minutes. This is to be multiplied by the number of data

sets (100) times the number of approaches (4) or the number of criteria (4), which amounts to

several days of e�ective running time.

The �rst experiment aims at comparing criteria AIC, BIC, DIC and HQC (see

Section 2.2.5). To this aim, Strategy D is applied to all classes above.

The second experiment aims at comparing Strategies A, B, C and D. To this aim, all

four Strategies are applied to the same 100 data sets of the �rst experiment. The stage record is

not available for synthetic data sets, thus in Strategies B-C-D, the shift times are taken as the

estimated parameters τ̂j (i.e., option 1 in Section 2.2.6). Since Strategy A provides the estimated

change point as an observation index k (rather than a time), the shift time is taken as the middle

of the interval [tk−1; tk].

2.4.3 Metrics for performance evaluation

The performance evaluation uses some of the metrics proposed by Aminikhanghahi and Cook

[2017]. At the end of the segmentation procedure each gauging is classi�ed into one of TP , FN ,

FP , TN (see example in Figure 2.7), where:

� A gauging is classi�ed TP (true positive) if it is the nearest neighbor of a true shift and

this true shift is within the 95 % CI of an estimated shift.

� A gauging is classi�ed FN (false negative) if it is the nearest neighbor of a true shift but

this true shift is outside all 95 % CI of estimated shifts.

� A gauging is classi�ed FP (false positive) if it is the nearest neighbor of an estimated shift

but the 95 % CI of this estimated shift does not contain any true shift.

� Otherwise a gauging is classi�ed TN (true negative).

� Ng = nTP + nFN + nFP + nTN
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CI2 (95%)
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TN
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Figure 2.7: Schematic example of the gaugings classi�cation into true positive (TP ), false negative (FN),

true negative (TN), false positive (FP ) for the performance evaluation of the segmentation results. si

represent the known shift times, while τ̂i are the change point estimates.

The Accuracy A is de�ned as the rate of correctly classi�ed gaugings:

A =
nTP + nTN

Ng
(2.8)

The Sensitivity S is maximal when no shift has been missed; low values hence correspond to

under-segmentation:

S =
nTP

nTP + nFN
(2.9)

The Precision P is maximal when all detected shifts are real; low values hence correspond to

over-segmentation:

P =
nTP

nTP + nFP
(2.10)

The RMSE between the times of correctly-detected shifts sTPi and the times of corresponding

true shifts strueki
is also computed:

RMSE =

√√√√nTP∑
i=1

(sTPi − strueki
)2

nTP
(2.11)

2.4.4 Results of the experiments

2.4.4.1 Comparison of criteria for choosing the number of change points

Figure 2.8 summarizes the results of the �rst experiment. Results reveal that:

� BIC and DIC on the one hand and AIC and HQC on the other hand lead to similar

performance metrics.
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Figure 2.8: Results of the �rst experiment with Strategy D, comparing four criteria for the optimal choice

of K and using all 100 simulated data sets.
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� BIC has the highest Accuracy/Precision, closely followed by DIC, while AIC and HQC

have the lowest. The same ranking holds for most simulation classes (not shown). AIC

and HQC lead to a higher degree of over-segmentation with, on average, 125 % and 67

%, respectively, more detected shift times than there really are. On the contrary BIC and

DIC over-estimate the number of shifts by only 13% and 40%, respectively.

� BIC and DIC sometimes miss a few shifts leading to lower values of Sensitivity than AIC

and HQC.

These results indicate that AIC and HQC have a marked tendency to over-segmentation

and should therefore be avoided. BIC and DIC have similar performances, and it is therefore

sensible to select the one that is conceptually more adapted to the chosen inference paradigm.

More speci�cally, BIC is solely based on the likelihood and is hence more adapted to maximum-

likelihood estimation (despite what its name confusingly suggests). By contrast, DIC makes use

of the whole posterior distribution and should therefore be favored in a Bayesian context such

as the one adopted in this paper.

2.4.4.2 Comparison of segmentation strategies

Figure 2.9 summarizes the results of the second experiment. Strategies A, B, C, D are

compared considering all simulations.

Strategy D is quite markedly the best-performing approach in terms of Accuracy, Precision

and RMSE. On the contrary Strategy A is quite markedly the worst one, due to a strong

tendency to over-detection. Its good Sensitivity means that it does not miss many changes, but

this comes at the cost of detecting too many spurious ones.

Strategies C and D are both recursive procedures and both yield better results in terms

of Accuracy, Precision and RMSE compared with the �single-pass" Strategies A and B,

demonstrating the added value of the recursive approach. However Strategy D yields better

results than Strategy C in terms of all metrics, emphasizing the added value of type-2 errors

treatment.
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Figure 2.9: Results of the second experiment: comparison between the four strategies for the segmentation

of residuals.
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Finally, Strategies A and B are conceptually similar but, surprisingly, yield quite di�erent

results. Strategy B yields better results in terms of Accuracy and RMSE. In particular, the lower

RMSE may be due to the added value of expressing change points in terms of time rather than

position.

2.4.4.3 Factors in�uencing the method performance

Figure 2.10 focuses on the results of Strategy D and evaluates its performance for data sets

with varied properties as described in Section 2.4.2.

The main factor a�ecting the performance of the segmentation is the mean number of

gaugings per period. As expected, performance increases with this number, especially in terms

of Accuracy and RMSE. Results suggest that 20 gaugings per period are su�cient to achieve

a good-quality segmentation. For higher values the Accuracy seems to stabilize, while the

RMSE continues decreasing, mainly because of the smaller inter-gauging interval. Performance

markedly deteriorates with only 10 gaugings per period. This con�rms that shifty curves

require a high frequency of gaugings. Sensitivity sharply increases when moving from 10 to

20/35 gaugings per period. Then, for 50 gaugings per period, few particular realizations have

Sensitivity=0 (since characterized by only one single small change which unfortunately has

been missed). Instead, Precision is weakly in�uenced by the number of gaugings per period.

However, with an average of 10 gaugings per period the segmentation detects some false shifts

and Precision slightly decreases.

Other factors have a lower impact on performance. Di�erent hydraulic con�gurations slightly

in�uence the performance of the segmentation. More complex rating curves (with multiple

controls) lead to a slight decrease in Accuracy and Precision and a slightly better Sensitivity.

Surprisingly, increasing the gaugings uncertainty does not markedly impact performance. It leads

to slightly lower but still very high values of Accuracy. It also leads to slightly lower Precision,

and, surprisingly, to higher Sensitivity. The RMSE values remain very similar. Finally, increasing

the shift magnitude does not markedly in�uence the performance. However, few simulations

characterised by very small shifts show lower Accuracy.
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Figure 2.10: Results of the second experiment: impact of the four properties P1 to P4 on the performance

metrics (Strategy D).
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2.5 Discussion

2.5.1 Contributions to the operational practice and the scienti�c

literature

The proposed method represents a more formal way to detect rating shifts using gaugings,

compared to empirical rules commonly used in the operational practice [WMO, 2010]. A

similar formalization objective was pursued by Morlot et al. [2014] who applied the Hubert

segmentation method [Hubert et al., 1989] for segmenting the residuals between the gaugings

and a baseline RC. Their method yielded satisfying results, even though it neglected the

residuals' uncertainties. However, the synthetic simulations and the real case study proposed in

this paper suggest that neglecting residuals' uncertainties may lead to over-segmentation.

The proposed method di�ers from the mCPD literature in its handling of shift times in two

aspects: considering time rather than position and providing shift time uncertainty. Existing

performance evaluation metrics proposed in the literature [Aminikhanghahi and Cook, 2017]

were also adapted to account for shift times uncertainty while comparing the true shift times

and the detected ones.

In addition to the segmentation procedure, this paper proposes a protocol for the generation

of synthetic data sets of gaugings and shift times. This protocol is very useful to evaluate the

performance of the segmentation method.

The case studies proposed in this paper indicate that the mean number of gaugings per period

remarkably a�ects the performance of the segmentation: this is consistent with the observation

of Ibbitt and Pearson [1987]. It is therefore important to consider this indicator when planning

gauging campaigns or deriving gauging strategies. According to the simulations, the availability

of 20 gaugings per period on average leads to an acceptable identi�cation of rating shifts. On

the contrary, less than 10 gaugings per period may lead to a poor segmentation. However, these

numbers should be considered as rough orders of magnitudes rather than precise �gures since

not all existing hydraulic con�gurations, shift magnitudes and gaugings uncertainties have been
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tested.

2.5.2 Current limitations

The method proposed in this paper is built on the main assumption that changes correspond

to sudden shifts (as opposed to slower transient changes), which may be inadequate for

phenomena such as vegetation growth and decay. The segmentation model proposed here is not

designed to analyse a trend in the residuals. Dynamic approaches such as those discussed in

the introduction Section 2.1.2 should instead be favored.

The case studies have illustrated the added value of expressing change points in terms of

time (rather than position) and of adjusting the shift time by looking for some causative events

within the uncertainty bound of the estimated change point, as described in Section 2.2.6.

Nevertheless, this adjustment must be done with precaution. Determining the cause of a shift

is a complex decision since several potential processes might be suspected (e.g., �ood, gravel

mining). This necessarily comes with a degree of expertise and subjectivity. For instance,

how to separate the sudden shift created by a morphogenic �ood from apparent shifts induced

by transient phenomena such as vegetation, backwater, etc.? How to choose when a single shift

may be attributed to several �oods? Introducing some degree of expertise and subjectivity is not

problematic in our opinion. It may even well improve an otherwise fully automated procedure.

2.5.3 Avenues for future work

The method proposed in this paper can, in principle, be used with any RC method that

provides RC uncertainty. Results from various RC methods could be compared in future work

to assess the extent to which the detected changes are robust with respect to the RC method.

The method is also based on the analysis of residuals computed with respect to discharge.

They may be computed with respect to stage too, as suggested by Morlot et al. [2014]. It

would therefore be of interest to modify the method to enable the use of stage residuals, and to

evaluate whether it has an important impact on the detected changes. We note however that

the treatment of stage residuals, and in particular of their uncertainty, is not straightforward.
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This is because the equivalent of Equation 2.2 for stage is not immediately available and may

require some additional error propagation.

More work could also be carried out to re�ne operational gauging strategies in the presence

of shifty RCs. Many factors may a�ect the e�ciency of the rating shift detection, in particular,

the number of gaugings, their uncertainty and their location along the RC. A single gauging

may be su�cient if it is precise and far away from the base RC. But in the case of minor shifts

or very uncertain gaugings several gaugings may be required. Notice also that the gaugings for

Meyras station (Section 2.3) have been performed for mostly all �ow conditions. This leads to

the estimation of relatively precise RCs. More uncertain RCs are likely to require more gaugings

to detect a shift of a given magnitude.

The case studies have also evidenced that, among the proposed criteria for the choice of

the optimal number of segments, the BIC and the DIC obtained the highest performance.

However the segmentation appears sensitive to these criteria. Future work includes a more

exhaustive comparison, as discussed by Buckland et al. [1997] and Burnham and Anderson

[2004], by analysing the weight of each penalty term related to data �t and number of parameters.

The proposed method is also inherently limited by gaugings availability - no change can

be detected in their absence. However, we stress that gaugings are not the only information

available at hydrometric stations. The proposed tool may be complemented with other sources

of information such as the stage record (e.g., by detecting a change in recession shapes or by

deriving sediment transport estimates), other independent hydrologic data (e.g., correlation

analysis with neighboring stations or with the output of a rainfall-runo� model) and direct

observations (e.g., bathymetric surveys).

Finally, as a general perspective, the proposed method could probably be extended to other

�elds where a relationship between two variables, calibrated with uncertain data, is subject to

sudden changes (e.g. relation turbidity vs. total suspended sediment concentration).
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2.6 Conclusion

We propose a method for the detection of rating shifts using gaugings. The method applies

a recursive segmentation procedure to the time series of residuals between the gaugings and a

time-invariant baseline RC. Unlike other classical methods for the segmentation of residuals,

the proposed method formally accounts for both gaugings and RC uncertainties through a

Bayesian approach. It also expresses change points and their uncertainties in terms of time

rather than position, which is of interest to search for speci�c events that may have caused the

shift. It performs a "top-down" recursive procedure, progressively re�ning the RC estimation

on homogeneous sub-periods and leading to the detection of minor shifts.

The method yielded encouraging results for the Ardèche River at Meyras, France, with the

detection of e�ective rating shifts, in good agreement with the o�cial dates of RC update.

Accounting for the uncertainty in the change point times allowed identifying �ood events as

likely causes of the shifts. Furthermore a performance evaluation procedure based on synthetic

gauging data sets for which the true shift times are known highlighted the added value of the

recursive segmentation procedure and the importance of accounting for both gaugings and RC

uncertainties. This approach yielded more accurate results than a "single-pass" strategy or a

strategy assuming homoscedastic residuals.

59/174 Matteo Darienzo





CHAPTER 3

STAGE-RECESSION ANALYSIS

This chapter is written as an article to be submitted to a scienti�c journal with the title

"Estimation of river bed evolution at hydrometric stations using stage-recessions".

Abstract

Tracking and estimating the evolution of the river geometry is particularly important at

hydrometric stations where stream�ow estimation is based on a stage-discharge relation. The

evolution of the river bed (e.g. due to intense �oods) may induce rating changes, which may

undermine stream�ow accuracy. We propose an original method for the detection and estimation

of net variations in the river bed elevation after �oods using the stage record only. The method

is based on the fact that when stream�ow tends towards zero, stage tends towards the mean

elevation of the main channel bottom or, if it exists, the mean crest elevation of the low

�ow section control. The method comprises three main steps. Firstly, the stage-recessions

are extracted from the stage record. Then all extracted recessions are estimated together in a

unique regression model through a Bayesian pooling approach. Finally a segmentation procedure

is applied to detect multiple step changes in speci�c parameters of this model. The method is

applied to the Ardèche River at Meyras in France, a gravel bed river subject to intense �oods

causing episodic river bed shifts. The method yields encouraging results with the detection and

61



Chapter 3. Stage-recession analysis

accurate estimation of major river bed shifts. Only some minor changes were more challenging

to detect. The stage-based method complements more traditional approaches based on gaugings,

and may enable a faster change detection.
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3.1 Introduction

3.1.1 Stage-discharge rating shifts at hydrometric stations

Some hydrometric stations especially located in natural rivers are a�ected by changes in

the stage-discharge rating curve (hereafter called RC), i.e. the relation used to estimate

stream�ow, Q, from the recorded water level, h (stage). These rating changes may undermine

the accuracy of the stream�ow estimates.

One of the causes of rating changes [Herschy, 1998; Mansanarez et al., 2019] is related to

river morphodynamics. The geometry of the river cross-section is subject to changes governed

by stream�ow intensity and sediment transport processes that cause erosion and deposition

[Coleman and Smart, 2011]. The intensity of these processes depends on many factors:

geological and geotechnical properties (bed soil type, grain-size distribution, soil mechanical

properties), catchment hydrology, channel sinuosity and geometry, vegetation cover, etc.

Some rivers are subject to sudden changes of river bed elevation during morphogenic

�oods, but are characterized by periods of stability between these events. Other rivers are

characterized by a continuous evolution of the river bed geometry, especially sandy bed rivers [Jia

et al., 2007; Wang and Xu, 2016] and rivers with dunes or alternated bars [Rodrigues et al., 2014].

The issue of sudden morphogenic changes is well known by the operational services and the

decision makers in charge of an "unstable" station. Indeed, their main interest is to detect and

estimate river bed changes after a �ood event with the least possible delay.

3.1.2 Methods for estimating river bed evolution

Currently methods for monitoring the river bed evolution include bathymetry measurements,

stage-discharge rating curves approaches and analysis of the stage record.

Bathymetry surveys provide a direct and relatively precise estimation of the river
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bed geometry [Zhao and Zhang, 2008]. Nevertheless, these measurements are performed

sporadically, usually during gaugings campaigns, and require important mobilization of sta�

and equipment. New techniques such as camera time lapse [Leduc et al., 2018] or Satellite-

Derived Bathymetry [Legleiter and Overstreet, 2012] can also provide information on the river

bed bathymetry. However, these techniques are restricted to large rivers in the absence of

vegetation and under low turbidity conditions [Legleiter et al., 2011].

A standard method to estimate the evolution of the river bed elevation at hydrometric

stations is based on gaugings and RC estimation [Rantz, 1982; WMO, 2010; Le Coz et al.,

2018]. If the RC equation is a power law of type Equation 1.1, then the o�set b is the parameter

re�ecting the river bed elevation. River bed changes can therefore be deduced by changes of

parameter b over time. Note that the exact meaning of the expression "river bed elevation"

depends on the type of control represented by Equation 1.1. For a channel control the o�set

b corresponds to the mean elevation of the controlling reach; alternatively, if low �ows are

controlled by a weir/natural ri�e, the o�set b denotes the mean crest elevation.

We propose in this paper an alternative method based on the stage record, which

is continuously available at hydrometric stations and may represent a simple and useful

information to detect the morphological changes and estimate the river bed elevation.

Surprisingly, this option has not been thoroughly studied in the research literature, even though

it is performed by many hydrometry operators who monitor visually the anomalies in the stage

record.

�apuszek [2003] suggested a method based on the assumption that the stage at low �ows

tends towards the river bed elevation as stream�ow tends towards zero. Assuming that annual

minimum stages are close to the river bed elevation, the author could thus study the long-term

trends in river bed elevation. A limitation of this approach is that focusing on annual minimum

stages restricts the detection of changes at an annual resolution. Consequently, the dates of the

�ood events responsible for morphological changes are di�cult to identify. In addition, annual

minimum stages might be far from the river bed elevation during wet years with no signi�cant

droughts. To overcome this issue, a recession analysis on the stage record may be of interest.
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3.1.3 Recession analysis

The recession analysis is usually performed on stream�ow. Two main issues are addressed in

the literature: the extraction of the individual recessions and the estimation of the corresponding

recession curves.

Many methods (both manual and automated) exist in the literature to separate stream�ow

recessions, as reviewed by Chapman [1999]; Tallaksen [1995]; Hall [1968]; Sujono et al. [2004].

In general, a recession period lasts as long as the stream�ow does not rise. Vogel and Kroll

[1996] proposed to start a recession period when a 3-day moving average begins to decrease and

ends when it starts to increase. Other algorithms aim at separating the "storm runo�" caused

by the �ood event from the hydrograph [Chapman, 1999], in order to isolate the base�ow, i.e.

the result of groundwater discharging into the stream. Some authors proposed to simply remove

the initial portion of the recession period, e.g. the initial 30 % [Vogel and Kroll, 1996]. In

addition to stream�ow, other approaches use precipitation data to de�ne periods not in�uenced

by precipitation [Lang and Gille, 2006; Tallaksen, 1995]. Moreover, the recessions are also

selected according to a minimum duration for the recession period, usually chosen between 4

and 10 days [Tallaksen, 1995].

The literature also proposes several methods for estimating the stream�ow recession curves,

as reviewed by Johnson and Dils [1956]; Tallaksen [1995]; Langbein [1938]; Lang and Gille

[2006]; Dewandel et al. [2003]. Some methods aim at estimating the individual recession curves

separately [Barnes, 1939]. Other methods aim at overcoming the high variability of the recession

behavior through the estimation of a master recession curve [Toebes and Strang, 1964; Nathan

and McMahon, 1990], obtained from various individual recessions. Moreover, Morlet et al.

[1982] and Sujono et al. [2001] proposed a method for analysing the recession characteristics

based on the wavelet transform.

The recession analysis is conceptually based on storage�out�ow models in linear and non-

linear forms [Brutsaert and Nieber, 1977]. The single linear reservoir is commonly used in

engineering practice, in particular using the simple exponential Maillet's law [Tallaksen, 1995]:
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Q(t) = Q0 e
−Λ t (3.1)

where:

- Q0 is the initial �ow of the recession period (at t = 0);

- Q(t) is the �ow after a recession time t;

- Λ > 0 is the recession rate.

Sometimes several exponential terms are distinctly visible [Barnes, 1939; Larue and Giret,

2004], denoting di�erent stream�ow origins: the rapid runo� due to fast �ow after �oods, the

sub-surface �ow and the very slow emptying of aquifers. By adding Nexp exponential terms,

stream�ow-recession can be seen as a superposed exponential function [Barnes, 1939]:

Q(t) =

Nexp∑
i=1

Qi e
−Λi t (3.2)

An alternative to the use of several exponential terms for modeling complex recessions is to

use models based on non-linear reservoirs [Wittenberg, 1994; Toebes and Strang, 1964]: e.g. the

double-exponential model [Horton, 1933] or the hyperbolic model [Werner and Sundquist, 1951;

Drogue, 1972].

3.1.4 Objectives and structure of the paper

The objective of this manuscript is to propose a method for estimating the river bed evolution

at hydrometric stations through the analysis of stage-recessions. In particular, the proposed

method pursues the following speci�c objectives:

� overcome the annual resolution of the method proposed by �apuszek [2003] by analysing

all available recessions rather than annual minimum stages only;

� evaluate whether models proposed in the literature for stream�ow-recessions can be applied

to stage-recessions;

� build recession models that consider some parameters as common to all recessions (in the

spirit of a "master curve" concept) and other parameters as speci�c to each recession;
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� assess whether changes in the time series of the recession-speci�c parameters can indicate

morphological changes.

The structure of the paper can be summarised as follows. Section 3.2 describes the proposed

method for the recessions extraction, estimation and segmentation. Then Sections 3.3 applies the

method to a well-documented case-study by evaluating di�erent recession models. Section 3.4

proposes a discussion on the results and the future perspectives for this work, such as the real-

time application. Finally, Section 3.5 summarises the main �ndings and conclusions.
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3.2 The proposed method for river bed estimation using stage

recessions

The proposed procedure for the stage-recession analysis is composed of three main steps,

detailed in the following subsections:

Step 1: Extraction of the stage-recessions from the stage record.

Step 2: Estimation of the stage-recession curves in a unique model through a Bayesian approach.

Step 3: Segmentation of the time series of the recession-speci�c parameters estimates.

3.2.1 Step 1: Extraction of the stage-recessions

Let h = (h(t1), ..., h(tn)) de�ne the values of the stage record. Note that times ti denote the

absolute times at which stage is recorded. This is a slight abuse of notation since in recession

equations, such as Equation 3.1- 3.2, t denotes the recession time, i.e. the time since the beginning

of the recession. The proposed algorithm for the extraction of the recessions from the recorded

stage time series h is based on the following steps:

1. Selection of all decreasing stage values hd among h such that h(ti) < h(ti−1) (black and

empty dots in Figure 3.1).

2. De�nition of the continuous sequence hrec from the values hd such that every value h(ti)

of the sequence is smaller than all the previous elements, h(ti−1), h(ti−2), ... (black dots in

Figure 3.1).

3. Separation of the recessions: a threshold parameter, χ, is used to separate one recession

period (k) from the next one (k + 1). If:

[hrec(ti)− hrec(ti−1)] > χ (3.3)

then the recession k ends at time ti−1 and a new recession k + 1 starts at time ti (see

Figure 3.1).

4. Selection of the recessions that ful�ll the following user-de�ned conditions:
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Figure 3.1: Schematic illustration of the recessions extraction method.

� a minimum number of stage data for each recession, e.g. nmin = 10;

� a minimum duration for the recession, e.g. tmin = 10 days.

Let Nrec denote the number of extracted recessions and Nk the number of stage values in

the recession k. The total number of stage values in all recessions is therefore Ntot =
∑Nrec

k=1 Nk.

3.2.2 Step 2: Bayesian estimation of the stage-recessions

The second step of the proposed method is based on the estimation of a unique model for

all recessions through a Bayesian pooling approach. We refer the reader to a similar approach

described in Mansanarez et al. [2019].

3.2.2.1 The stage-recession model

As mentioned in the introduction, the simplest model for stream�ow-recession is the

single exponential function (Equation 3.1). Combining Equation 3.1 with the RC power law
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Table 3.1: Stage-recession models h(t, k) = f(t, k|θR) used in the paper, where t is the recession time, k

is the recession index and θR is the vector of model parameters.

Stage-recession model
Stable

parameters

Recession-speci�c

parameters

Superposed-

exponential

[Barnes, 1939]

M1. h(t, k) = α(k) e−λ t + β(k)

M2. h(t, k) = α
(k)
1 e−λ1 t + α2 e

−λ2 t + β(k)

M3. h(t, k) = α
(k)
1 e−λ1 t + α

(k)
2 e−λ2 t + β(k)

M4. h(t, k) = α
(k)
1 e−λ1 t + α2 e

−λ2 t + α3 e
−λ3 t + β(k)

M5. h(t, k) = α
(k)
1 e−λ1 t + α

(k)
2 e−λ2 t + α3 e

−λ3 t + β(k)

λ

λ1, α2, λ2

λ1, λ2

α2, α3, λ1, λ2, λ3

α3, λ1, λ2, λ3

α, β

α1, β

α1, α2, β

α1, β

α1, α2, β

Double-

exponential

[Horton, 1933]

M6. h(t, k) = α(k) e−λ t
η

+ β(k)

M7. h(t, k) = α(k) e−λ
(k) tη + β(k)

λ, η

η

α, β

α, λ, β

Hyperbola

[Drogue, 1972]

M8. h(t, k) = α(k)

(1+λ t)η + β(k)

M9. h(t, k) = α(k)

(1+λ(k) t)η
+ β(k)

λ, η

η

α, β

α, λ, β

(Equation 1.1) gives the following stage-recession model:

h(t) =

(
Q0

a

) 1
c

e −Λ
c
t + b (3.4)

Therefore, as for the stream�ow-recession, the stage-recession can still be modelled with an

exponential function with the unique di�erence that it does not tend to zero, but rather to the

o�set b.

Unfortunately, Equation 3.4 does not hold for more complex recession models and/or for a

multi-control piecewise RC. Despite this, we postulate that models proposed in the literature

for stream�ow-recessions can reasonably be applied to stage-recessions by adding a parameter

β representing the asymptotic stage.

In particular, nine di�erent stage-recession models are proposed in this paper and reported

in Table 3.1. They all use one or more parameters representing the initial stage (αi), one

or more parameters representing the recession rate (λi) and one parameter representing the

asymptotic stage (β).

Model M1, representing a simple exponential behavior, is often used for studying the lowest

part of the recession and may not be capable of describing the entire recession behavior. Instead,
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all other models aim at describing the entire recession from the fast runo� to the slow emptying

of the aquifer.

For this purpose models M2-M5 add to the simple exponential function few exponential

terms based on the superposed-exponential concept (where λi > λi+1). In this paper we restrict

to three exponential terms, but more terms may be added, keeping in mind that the additional

�exibility comes at the cost of additional parameters.

On the other hand, models M6-M9 aim at describing the entire recession through the

introduction of an additional parameter (η) acting on the shape of the recession.

Models M1-9 also di�er in the choice of the common and recession-speci�c parameters. All

models M1-5 assume a static λi, implying that the recession rates do not vary over recessions,

and a recession-speci�c α1, implying that the initial stage of the �rst exponential contribution

(which describes the fast runo�) is speci�c to each recession, thus dependent on the high

variability of �ood peaks. Regarding the two-superposed-exponential models, M2-3, while M3

assumes a recession-speci�c initial stage α2, M2 assumes the second exponential contribution is

constant across recessions and the variability between recessions comes from the �rst exponential

term only. Models M4-M5 add a static third exponential contribution to models M2-3, assuming

that the aquifer emptying contribution is constant across recessions.

On the other hand, Models M6-9, which consider one single recession contribution, all

assume a recession-speci�c initial stage α and a static shape parameter η. Finally, while models

M6, M8 consider a static λ, implying that the recession rate does not vary over recessions, for

models M7, M9 parameter λ is considered recession-speci�c.

For a given recession model, let θR denote the inferred parameters of the recession model,

comprising static θstatic and recession-speci�c θrecession parameters.
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3.2.2.2 Likelihood computation

Let ti and ki denote the time and the recession index, respectively, associated to the i-th

recession stage value. Then, the observed stage value h̃i is written as the stage value predicted

by the regression model ĥi = f(ti, ki|θR) plus a structural error and the observed stage error.

Both types of error are assumed independent and Gaussian distributed with mean equals to

zero and standard deviation equals to σR,i = γR1 + γR2

(
ĥi −min(hrec)

)
and to a given uh,i,

respectively. The vector of all inferred parameters is θ = (θR, γR1, γR2). The likelihood L of the

Ntot observed stage recession values h̃ is:

L
(
h̃|θ, t,k

)
=

Ntot∏
i=1

pnorm

[
h̃i|f(ti, ki|θR),

√
σ2
R,i + u2

h,i

]
(3.5)

where pnorm

[
h̃i|m, s

]
is the pdf of a gaussian distribution with mean m and standard deviation

s at the observed stage value h̃i.

The static recession parameters θstatic appear in allNtot terms of the product in Equation 3.5.

Consequently, the information contained in all the recession observations is used to infer these

static parameters. On the contrary, the recession-speci�c parameters θ
(k)
recession only appear in

the terms of the product involving observations from the k − th recession.

3.2.2.3 Prior speci�cation

Bayesian inference requires prior speci�cation on parameters θ. The joint prior distribution

is:

p(θ) = p(γR1) p(γR2) p(θstatic) p(θrecession) (3.6)

Positive uniform distributions are assigned to the initial stage parameters: α ∼ U(0, 10n),

where n is the order of magnitude of the stage values. A uniform distribution is assigned to the

asymptotic stage parameter: β ∼ U(−10n,+10n). Log-normal priors are used for the recession

rate parameters λ. It is convenient to specify this prior in terms of the more intuitive half-life

τ (the time required for decreasing the initial stage by a factor of two), which is related to the

rate parameter by:
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λ =
ln 2

τ
(3.7)

The log-normal prior on τ can be translated into a log-normal prior on λ whose logarithm

has mean equal to ln (ln 2)− ln τ and standard deviation equal to σlog:

λ ∼ LN (ln (ln 2)− ln τ, σlog) (3.8)

A log-normal prior is also speci�ed to the shape parameter η ∼ LN (ln 1, 1). For the structural

error parameters a uniform prior is speci�ed: γR1 ∼ U(0, 10n) and γR2 ∼ U(0, 100),

3.2.2.4 Posterior distribution

Bayes' theorem combines likelihood with priors through:

posterior︷ ︸︸ ︷
p
(
θ|h̃, t,k

)
∝

likelihood︷ ︸︸ ︷
L
(
h̃|θ, t,k

) prior︷︸︸︷
p (θ) (3.9)

The multi-dimensional posterior distribution is explored with an adaptive block Metropolis

sampler described in Renard et al. [2006]. The MCMC samples provide marginal and joint

properties of parameters θ (e.g. posterior mean, standard deviation, credibility interval) but

also the most probable parameters values θ̂ (maximum a posteriori) having the largest posterior

pdf. MCMC convergence is visually checked through trace and density plots and by ensuring the

Gelman factor [Brooks and Gelman, 1998] is smaller than 1.2. In this paper, 150,000 iterations

are performed, but the �rst half of MCMC is discarded (burned). Finally, statistics are done

considering one iteration every 100.

3.2.3 Third step: recessions segmentation

Once the recession model has been estimated, the temporal evolution of the recession-

speci�c parameters θrecession is analysed. Particular attention is given to the evolution of the

asymptotic stage parameter β, which corresponds to the elevation b of the lowest control.

A segmentation procedure is therefore applied to the series of the estimated asymptotic

stages β = (β(1), ..., β(Nrec)) searching for net shifts. Any segmentation method proposed in the
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literature can be applied. In this paper the segmentation procedure developed by Darienzo et al.

[2021] (Chapter 2) is used. It is a multi change point detection method based on a Bayesian

approach and on a model selection criterion to choose the optimal number of change points, e.g.

DIC [Gelman et al., 2004; Pooley and Marion, 2018]. This method is selected because it has

the following properties:

� it accounts for the uncertainty a�ecting each estimated parameters (potentially variable

from recession to recession);

� it expresses change points in terms of time (rather than position), which is convenient since

the recessions are irregularly located along the time series. To this aim the time associated

to each parameter β(k) is the time at which the corresponding recession begins.

� it provides an uncertainty on the detected shift times.

Finally, the method also provides the segments mean with uncertainty. They correspond to

the estimation of the river bed elevation during each period of stability delimited by the shift

times.

In the next section, the proposed stage recession analysis is applied to the Ardèche River at

Meyras in France, a gravel bed river characterised by river bed degradation after episodic �oods.
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3.3 Application: Ardèche River at Meyras, France

3.3.1 Description of the station site

The Ardèche River at Meyras is located in a relatively small catchment (98 km2). It is a

gravel bed river degrading during each important �ood resulting in vertical shifts in the stage

record (as evidenced in Figure 3.2). Sikorska and Renard [2017] and Mansanarez et al. [2019]

have exhaustively studied this station, proposing a three-controls hydraulic con�guration: one

rectangular weir section control activated at very low �ows by a natural ri�e, one main wide

rectangular channel control activated at medium-high �ows, and one wide rectangular �oodway

channel control added to the main channel control at very high �ows. For this station the

asymptotic stage of the stage-recession model, β, corresponds to the o�set of the �rst control,

b1, i.e. the mean crest elevation of the natural ri�e. The stage record is studied for the period

between 07/11/2001 and 29/10/2018. Gaugings and comments about rating shift times have

been provided by the hydrometric service, UHPC Grand Delta.

3.3.2 Step 1: Recessions extraction

Figure 3.2 illustrates the results of the �rst step of the proposed recession analysis by

using, for comparison, three di�erent reasonable values of the threshold parameter χ: 10, 30,

50 cm. All other options have been �xed to: nmin = 10 (to have enough points to estimate

recession-speci�c parameters), tmin = 10 days (consistently with the literature). We also

sub-sampled the stage time series to one value per day to reduce computational cost.

Figure 3.2 evidences the shifting of the low-stage recession levels, probably due to river bed

erosion, con�rming the interest of the proposed analysis to this station.

Moreover, using a low value of χ = 10 cm leads to the extraction of a large number of

recessions Nrec = 130. However, many of these recessions are very short (characterised by

recession length between 10 and 30 days), with only 6 recessions reaching a length > 80 days.

Higher values of χ lead to the extraction of fewer but much longer recessions. Since the main goal
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Figure 3.2: Results of the proposed recession extraction method applied to the Ardèche River at Meyras:

the time series (on the left) and the overlapped recessions (on the right) extracted from the stage record

with di�erent values of the threshold parameter χ: a) χ = 10 cm; b) χ = 30 cm; c) χ = 50 cm. A

speci�c color is assigned to each extracted recession according to a rainbow gradient, going from the

oldest recessions (in red) to the most recent ones (in violet).
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of this work is the detection and estimation of shifts of the asymptotic stage, longer recessions

are more suitable to the analysis, thus a reasonably high χ is here preferred.

3.3.3 Step 2: Recessions estimation

The second step consists of estimating the stage-recession models. For comparison purposes,

all the recession models proposed in Table 3.1 are used for the recession data sets obtained with

χ = 10, 30, 50 cm. A standard deviation uh,i = 0.5 cm is assigned to represent the uncertainty

in all stage observations.

The priors for the inferred parameters for each model are speci�ed as described in

Section 3.2.2.3. Parameter λ is speci�ed according to Equation 3.8. For all models having

a single parameter λ we assume τ = 0.5 days describing the fast runo� and σlog = 1. For

models M2-M5 we assume τ = 80 days and σlog = 0.5 for the slowest rate parameter (λ2

for M2-M3, λ3 for M4-M5) to describe the slow emptying of the aquifer. Finally, for models

M4 and M5 we assume τ = 50 days and σlog = 1 for parameter λ2 to describe the subsurface �ow.

As an example, Figure 3.3a illustrates the results of the recession estimation using χ = 50

cm and using models M1, M2, M4. For simplicity, only the MAP (maximum a posteriori) curves

are plotted. As expected, results evidence that model M1 (one simple exponential term) does

not �t well to the entire recession behavior. Instead, both model M2 and M4 (with two and

three exponential terms, respectively) lead to quite similar curves and seem to better represent

the fast runo� component as well as the slower components associated with low �ow levels.

3.3.4 Step 3: Recessions segmentation

Figure 3.3b illustrates the results of the segmentation applied to the time series of the

asymptotic stage parameter β (corresponding to the mean elevation of the low-�ow control)

for models M1, M2, M4. The minimum segment length has been �xed to 1 and the maximum

number of change points has been �xed to 7. The results of the segmentation of β time series

are also plotted against the stage record and the gaugings in Figure 3.3c.
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Figure 3.3: Results of the proposed method applied to the Ardèche River at Meyras by using = 50 cm and

models M1, M2, M4 of Table 3.1: a) Estimation of the recession curves. b) Results of the segmentation

applied to the time series of recession-speci�c parameter β. The horizontal red lines and the vertical blue

lines are the most probable values of the segments mean and of the shift times, respectively. c) Gaugings,

detected shifts and pdfs of the shift times plotted against the stage record.
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Several step changes are found in the time series of parameter β, with results varying across

the di�erent recession models. This di�erence is in terms of number of detected changes (4

vs 4 vs 3 for models M1, M2, M4, respectively), their location and the estimated segments

mean: with model M1, β represents a stage that is above the river bed elevation (notice the red

segments in Figure 3.3c are above the minimum stage values in the stage record), while with

model M4, β represents a stage that is much below the river bed elevation. With model M2, β

corresponds more closely to the river bed elevation.

Finally, results reveal signi�cant di�erences in the uncertainty of parameter β. While models

M1 and M2 lead to similar and relatively small uncertainties of β, model M4 leads to much

larger uncertainties (due to the additional parameters associated with the three superposed

exponential terms).

As the true dates of river bed shift and the true values of river bed elevation are unknown,

the choice of the most adapted model and χ value is challenging. This issue is addressed in the

next section.

3.3.5 Sensitivity to the selected recession model

In order to select the most adapted model we propose two approaches:

� One general method applicable to all case studies and based on a model selection criterion.

� One method applicable to stations where information about past rating shifts is available,

and based on the comparison between the shift times and magnitudes detected by the

proposed method and those obtained by other methods (e.g. using the gaugings).

3.3.5.1 Using a model selection criterion

The recession models can be compared by means of the Deviance Information Criterion,

which measures the trade-o� between the �t and the number of parameters required to achieve

it and which is well suited to the Bayesian framework adopted here (see Section 2.4.4.1). We use

the version proposed by Pooley and Marion [2018] from the formulation of Gelman et al. [2004]
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and based on the Deviance D(θ) = −2 ln (p (h|θ)), de�ned as:

DIC = E [D(θ)] +
1

2
Var [D(θ)] (3.10)

where E [.] and Var [.] represent the posterior mean and variance, computed using the MCMC

samples. According to this criterion, the model to be chosen is the one with the lowest DIC.

Figure 3.4 illustrates the results for the Meyras case study by considering the di�erent

proposed models and the three di�erent proposed values of parameter χ. Results reveal that

while the ranking of the exponential models M1-M5 is sensitive to parameter χ (di�erent χ

values lead to di�erent model rankings), models M6-M9 lead to similar DIC for all values of

χ. Models that yielded the lowest DIC are M5, M9, independently on the values of χ, and M3

with χ = 30− 50 cm.

Another remarkable result from using models M2-M5 is that considering a recession-speci�c

α2 lowers the DIC (compare M3 vs. M2 and M5 vs. M4) with the exception for M2-M3 and

χ = 10. In a similar way, for models M6-M9 considering a recession-speci�c λ leads to a lower

DIC.

Thus, if long recessions are available (as in this case study) the superposed exponential model

with recession speci�c α2 is preferred. On the contrary, for those case studies characterised by

frequent �oods thus with short recessions, the hyperbolic model with recession-speci�c λ, M9,

may be preferred because not signi�cantly depending on χ, thus on the length of the recessions.
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Figure 3.4: Values of DIC computed by using nine di�erent recession models and three di�erent values

of extraction parameter χ.

3.3.5.2 Comparing the shift times and their magnitudes

In addition to using the DIC, comparing the segmentations obtained with di�erent models

and di�erent values of χ can also be insightful.

Figure 3.5 evidences that increasing the value of χ (longer recessions) leads to slightly

di�erent segmentation for a given model. However it also shows that one shift time is detected

by all models and by all χ values, and other two shift times by several models, which means

that these three shifts are most likely three genuine shifts.

If additional information is available about the rating shift times from other methods (e.g.

segmentation of the gaugings, or o�cial dates of RC update) then the comparison can be even

more exhaustive. In general we observe that models M1, M2, M4, M5 are the most consistent

with the gauging segmentation (provided in Chapter 2), independently on the χ value, despite

some of these models having a pretty high DIC. On the other hand, the models that yielded the

less consistent segmentation independently on the χ values are models M6, M7, M8.
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Figure 3.5: Results of the segmentation in terms of shift times (only the most probable time values -

maximum a posteriori - are plotted) yielded by using nine di�erent recession models and three di�erent

values of extraction parameter χ. Also the shift times obtained from the gaugings [Darienzo et al., 2021]

(Chapter 2) are plotted for comparison. Notice that the models have been ordered according to increasing

values of DIC obtained with χ = 50 cm.
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Figure 3.6: Results of the segmentation in terms of estimated river bed elevation β̂ (MAP) for each

period delimited by the detected shift times (a) and of estimated shift ∆β̂ (b) for nine di�erent stage-

recession models and χ = 50 cm. Also the estimated b1 (MAP) and shifts ∆b̂1 obtained from the gaugings

[Darienzo et al., 2021; Mansanarez et al., 2019] are plotted for comparison. Error bars represent the 95%

uncertainty interval of the shift estimates.
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Figure 3.6a compares the estimated β̂ (MAP) for the nine models compared to parameter

b̂1 (MAP) estimated by using the gaugings by means of the segmentation proposed by Darienzo

et al. [2021] and the RCs estimation proposed by Mansanarez et al. [2019]. The estimation of

β̂ varies quite strongly with the model and is sometimes quite di�erent from the one estimated

with gaugings: models M1, M3 and M9 (especially model M1) tend to overestimate β, while

models M2, M4 and M5 (especially M5) tend to underestimate it. Model M2 leads to β

estimates very close to those obtained from gaugings.

Comparing the corresponding shift magnitudes is also insightful. Figure 3.6b shows the

values of ∆β̂ (the di�erences between the consecutive β̂ estimates (MAP)) and their uncertainty

(the quadratic sum of the uncertainties of the two consecutive β̂) for the nine models and

χ = 50 cm, which are compared to the shift estimates ∆b̂1 obtained from the gaugings.

Results reveal that all models lead to shift estimates similar to those obtained by using

the gaugings, with the exception of models M6, M7 which lead to some unrealistic (and

highly uncertain) shift estimates. This interesting result suggests that reasonably estimating

shift magnitudes is possible even when the estimation of the absolute river bed elevation is

inaccurate. Moreover, the two shifts (the �rst and the last one) detected by the gaugings and

missed by almost all models appear to be very small (of the order of 2 cm).

Finally, an interesting observation from this comparison with gauging-based segmentation

results is that recession models ranking quite poorly in terms of DIC (Figure 3.4) can still

estimate shift times and amplitudes quite acceptably (e.g. M2 and even M1). The only models

that lead to consistent results both in terms of DIC and comparison with gaugings are models

M5 (with χ = 10− 30 cm) and M9 (with χ =50 cm).
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3.4 Discussion

3.4.1 Limitations

The recession extraction results have shown for some models a high sensitivity of the

threshold parameter χ. A reasonably high value of the threshold parameter χ for the recession

extraction is in general recommended, to ensure the availability of quite long recessions.

However, even with a high value of χ, obtaining recessions long enough may be challenging for

those catchments characterised by frequent �oods. For such catchments the shift detection and

estimation may be challenging.

The recession models considered in this paper are adapted to undisturbed natural systems

but may not be adapted when low �ows are a�ected by other processes: e.g. gravel mining

operations, beavers/swimmers dams.

This paper is limited to river bed vertical instability. However, the shape of the river cross-

section can change horizontally or vertically [�apuszek, 2003] and the horizontal instability

implies change in the width. Moreover, the method is geared toward change in low �ow controls,

and it's unlikely that changes in e.g. �oodways of high-�ow channels can be detected from the

stage record.

Finally, the proposed stage-recession analysis needs to be tested for stations subject to

frequent �oods, or for stations located at sandy bed rivers subject to a continuous evolution

of the river bed. For sandy bed rivers the segmentation step should be replaced by some form

of trend analysis.

3.4.2 Perspective: real-time stage-recession analysis

A stage-recession analysis may be able to detect and estimate a RC change even before

any gauging is performed, which is of interest to manage the RC in "real time". Indeed, the

real-time application of the proposed recession analysis is a promising perspective of this work.
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Note that the expression "real time" refers to the attempt to use the continuously incoming

stage data to make decision about the RC, but it does not imply a notion of quickness. The

estimation of the river bed already a few days after a �ood may be very useful to provide fast

information about river bed shifts and update the RC. While the retrospective analysis of the

stage-recessions is characterised by the availability of all entire recession data sets, the real-time

recession analysis sequentially adds the incoming stage values to the current recession.

The real-time application �rstly requires the retrospective analysis of all past recessions in

order to estimate the static parameters of the considered recession model. This can be done

through the method described in Section 3.2. Then, the real-time estimation of the current

recession can be performed in a sequential way by adding at each time step the incoming stage

and updating the recession estimation. The recession estimation can be done through the same

Bayesian regression approach but using the data of the current recession only and by considering

as priors for parameters θstatic the corresponding posteriors obtained from the retrospective

analysis.

Figure 3.7 shows an example of real-time re-analysis for the Meyras case study by using

model M2 and χ = 50 cm. The considered real-time window comprises the recession period that

follows the morphogenic �ood at day 2550 (see the stage record of Figure 3.3) for which a net

shift was observed. Model M2 detects a shift after only nearly 6 days and the shift is con�rmed

at all subsequent time steps.

These �rst results are encouraging but further work is necessary to test the real-time ability

to accurately detect and estimate existing shifts and to avoid detecting shifts that do not exist.
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Figure 3.7: Results of the real time application by using model M2 and χ = 50 cm and for three di�erent

real-time iterations: t = 5.9 − 17.8 − 81.3 days after the �ood peak. The current recession estimation is

illustrated in blue in the top panels and the asymptotic stage estimation β in the bottom panels. Also the

past recessions are plotted in gray for comparison. The gray horizontal line and the gray ribbon represent

the mean and the uncertainty interval (at 95 %), respectively, of the β estimates of all past recessions.
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3.5 Conclusion

The proposed method for detecting river bed changes and estimating their evolution using

the stage record is based on a stage-recession analysis and on the assumption that stage tends

to the river bed as stream�ow tends to zero.

The method consists of three main steps. It starts with the extraction of all available

recessions from the stage record. It proceeds with the estimation of a unique model for

all recessions through a Bayesian approach distinguishing recession-speci�c parameters and

common parameters. Among the recession-speci�c parameters the asymptotic stage corresponds

to the river bed elevation. Finally, the method applies a segmentation procedure to the series of

the asymptotic stage parameter of all recessions. If some step changes are detected it provides

the river bed change estimates with quantitative uncertainty.

The method yielded encouraging results with the detection and estimation of major river

bed changes for the Ardèche River at Meyras in France. These changes can be detected quite

accurately, even when the absolute river bed elevations cannot. Some recession models ranked

poorly in terms of DIC but were still capable of detecting and estimating changes. Future

perspectives include the application of the proposed recession analysis to the real-time context.

The prediction of changes in the river bed elevation may be possible a few days after the �ood.
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CHAPTER 4

FAST DETECTION OF POTENTIAL RATING SHIFTS BASED ON

THE STAGE RECORD AND BEDLOAD ASSESSMENT

4.1 Introduction

4.1.1 General principle

As already discussed in previous chapters, one frequent cause of rating changes at the

hydrometric stations is river bed morphological changes. Erosion and deposition are mainly due

to the sediment transport induced by intense �oods. During these events the RC may become

obsolete and the estimation of stream�ow inaccurate. For this reason, station managers and

�ood forecasting services may want to quickly detect potential morphological changes during

and after the �oods.

However, gaugings and bathymetry surveys are rarely performed during �oods because

of the di�culty and danger of accessing the site. Thus gauging-based methods such as the

one proposed in Chapter 2 are not suitable for the fast detection of rating changes. Also

the recession analysis proposed in Chapter 3 is not adequate during �oods since it applies to

recession periods only. Sometimes non-contact techniques, such as radar or imagery techniques,

are deployed during �oods for fast detection but they cannot be generalized, thus we cannot

only rely on them. The stage record h(t) is in fact the only information always available,

including during �oods, to detect and estimate morphological changes (as long as the recording
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instrument is not damaged by the �ood).

One possible way of using the stage data for the fast detection of a potential change is

based on the fact that a minimum water depth is needed to trigger bedload, hence a potential

morphological change (c.f. critical threshold for incipient motion [Meyer-Peter and Müller,

1948; Bu�ngton and Montgomery, 1997; Perret, 2017]). Thus, the morphogenic �ood can be

de�ned as the period of the stage record characterised by values larger than a triggering stage.

Moreover, the volume of transported sediments, and therefore the potential for morphological

change, increase with the duration and the intensity of the �ood.

The change detected by simply considering the exceedance of a critical stage value merely

represents a potential change. Indeed, it may happen that both scour and �ll processes occur

during �oods [Laronne et al., 1994] or that bedload transport is at equilibrium so that no

net changes (signi�cant di�erence before and after the �ood) really occur. Furthermore the

consolidation degree of bed material may change in time. Thus, two �oods with the same

intensity and duration may cause di�erent morphological changes, depending on upstream

sediment sources and local conditions.

From an operational point of view a potential change requires increasing the uncertainty

around the parameters of the RC, with longer and more intense �oods leading to a larger

uncertainty increase. By contrast, methods using gaugings or stage-recessions (see previous

chapters) aim at detecting e�ective changes and re-estimating these RC parameters, thus

modifying not only their variance but also their mean value.

There is the need to develop a tool for detecting potential changes and to calibrate it against

the historic morphological changes of the station assuming that the dynamics of the causal

processes do not vary over time. The proposed approach is developed by borrowing ideas from

river sediment transport modelling.
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4.1.2 Sediment transport modelling

River sediments are heterogeneous aggregates of minerals, organic matter and biological

matter. Their density and grain-size distribution strongly in�uence the processes of erosion and

deposition. The sediment transport is initiated when the bed shear stress τb exerted by the

water exceeds a critical value τc [Meyer-Peter and Müller, 1948]. Under the assumptions of wide

rectangular channel and uniform �ow conditions the shear stress condition can be re-expressed

in terms of water depth y, with the triggering depth yc being a function of the characteristic

sediment diameter, the water and the sediment densities, the river bed longitudinal slope and

the critical shear stress [Shields, 1936].

Once the critical shear stress is de�ned, there exist many semi-empirical formulas (e.g. Meyer-

Peter and Müller [1948]; Engelund and Hansen [1967]; Camenen [2007]; van Rijn [1984]) to

estimate the sediments �ux as reviewed and compared by Davies et al. [1997]; Camenen and

Larroudé [2003] for instrumented rivers. These formulas make various assumptions on where

this �ux comes from (e.g. bed load �ux for well-sorted �ne gravel).

4.1.3 Sediment transport models as proxys for potential changes

Sediment transport models need to be calibrated using measurements of transported �uxes

which, unfortunately, are not available in general at hydrometric stations (especially during

�oods). Therefore it is not possible to use these models to precisely predict the volume of

transported sediment.

However, we postulate that these models can still provide a valid information on the dynamics

of transport (not the �uxes themselves), which we consider as a proxy for potential change. We

also postulate that this proxy model, to be related to morphological changes, should compute

the cumulative volume of transported sediments, rather than the instantaneous �ux. This

proxy model �rst has to be calibrated in retrospective mode, using previously detected changes

identi�ed by other methods: e.g. the segmentation of gauging residuals proposed in Chapter 2

or the stage-recession analysis proposed in Chapter 3. This calibration can be based on the
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principle that all past �ood-induced changes should be detected by the proxy model.

4.1.4 Objectives and structure of the chapter

The main goal of this work is to propose a sediment transport proxy analysis for the fast

detection of potential morphological changes at hydrometric stations during �oods. The proposed

method must be:

� calibrated without the use of sediment transport measurements, but by using only

information widely available at hydrometric stations: past rating changes and the stage

record;

� suitable for a real-time application, when the managers of a station may want to quickly

detect a potential morphological change.

The structure of this chapter can be summarised as follows. Section 4.2 describes the steps

of the proposed method for the sediment transport proxy analysis. Section 4.3 then presents and

discusses the results of its application to the Ardèche River at Meyras in France. Then limitations

and possible improvements are discussed in Section 4.4. Finally Section 4.5 summarises the main

�ndings of the study.
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4.2 The proposed sediment transport proxy analysis

4.2.1 Overview

The method is based on a retrospective analysis of the stage record and on documented rating

shifts. It starts with the selection of the reference morphogenic events from the information

available from the station history. Then it applies a sediment transport model to the stage

record in order to reproduce the reference morphogenic events and to identify all other potential

morphogenic events. It �nally establishes a relation between the cumulative sediment transport

and the associated potential rating shift to be used in real time. All steps are described in the

following subsections.

4.2.2 Information available from the station history

In order to calibrate the proposed method, some information from the station history is

required, and more speci�cally the following two sets of data:

1. the set of the e�ective �ood-induced shifts, leading to the reference shift times tref .

2. the set of the associated shift estimates. Usually the shifts a�ect the o�set of the lowest

control. We therefore use the notation ∆b.

As regards the set of tref , one can use the methods proposed in the literature (see Chapter 2)

or the methods proposed in the previous chapters to detect e�ective rating shifts. However, only

the morphological changes caused by sediment dynamics should be included, and hence there

may be more ∆b's related to other processes (e.g. gravel mining). Since the causes of the rating

shifts are in general challenging to determine, if no additional information is available, then we

suggest to apply the simple following rule: if the reference shift time refers to a �ood then the

rating shift is kept because most probably due to the sediment dynamics. On the contrary if it

refers to a period of low �ows it is discarded because probably caused by other processes.

As regards the shift estimates ∆b, they can be obtained from the RCs established for each

period delimited by the times tref . To this aim, several methods are proposed in the literature
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(as reviewed by Kiang et al. [2018]). We use in this manuscript the BaRatin-SPD method

proposed by Mansanarez et al. [2019] because of its ability to estimate RCs also for periods

characterised by few or no gaugings. Alternatively, in the absence of gaugings the recession

analysis proposed in Chapter 3 can be used too. Then, if we consider a single-control hydraulic

con�guration a
(
h− b(k)

)c
valid for the period k before a �ood peak t

(k)
ref where the o�set b

represents the mean elevation of the channel bed, the control becomes a
(
h− b(k+1)

)c
after the

�ood, with the shift of parameter b:

∆b(k) = b(k+1) − b(k) ∼ N

(
µ

(k+1)
b − µ(k)

b ;

√(
σ

(k+1)
b

)2
+
(
σ

(k)
b

)2
)

(4.1)

where µb indicates the estimated value of b and σb its uncertainty. In the Bayesian context they

correspond to the mean and the standard deviation of the posterior distribution of parameter

b, respectively. Notice that Equation 4.1 can be generalised to more complex hydraulic

con�gurations.

4.2.3 Estimation of the triggering stage and detection of all potential

morphogenic events

The basic principle of the proposed method is that a minimum water depth is needed to

trigger a potential morphological change. More precisely, the sediment transport is initiated

when the bed shear stress at time t, τb(t), exerted by the water exceeds a critical value τc. In a

wide rectangular channel in uniform �ow conditions this relation can be written as:

τb(t) = ρ g y(t) S0 > τc (4.2)

where:

� ρ = 1000 kg/m3 is the water density;

� g = 9.81 m/s2 is the gravity acceleration;

� S0 is the river bed longitudinal slope (whose approximated value can be obtained from a

hydraulic modelling or topographical survey, e.g. 0.005);

� y(t) is the water depth at time t, which is not known directly but can be obtained from

the stage record through the hydrometric relation: y(t) = h(t)− b(t).
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For non-cohesive sediments this condition is in general made dimensionless [Shields, 1936]:

τ∗b (t) =
τb(t)

(ρs − ρ) g d
> τ∗c (4.3)

where:

� ρs = 2650 kg/m3 is the usual quartz-rich sediment density;

� d is the median or other characteristic diameter of sediments. Even though its value is

di�cult to estimate without speci�c grain size measurements, its order of magnitude (e.g.

d = 0.05 m) can be evaluated from prior knowledge on the site and/or photos;

� τ∗c is the dimensionless critical bed shear stress with typical value within the range

[0.03; 0.09] [Bu�ngton and Montgomery, 1997; Soulsby, 1997] according to grain size,

slope, friction, hiding/exposure etc. It can be set to the traditional value for gravels, 0.047

[Meyer-Peter and Müller, 1948].

The triggering stage hc(t) can be obtained by combining Equation 4.2 and Equation 4.3:

hc(t) = τ∗c
ρs − ρ
ρ

d

S0
+ b(t) (4.4)

All parameters of Equation 4.4 can be set to their prede�ned values, except for parameters d

and S0, which are strongly site-speci�c and may be a�ected by much larger uncertainty (if no

speci�c surveys are performed). Therefore, the method needs to compute the triggering stage

hc(t) by calibrating the value of the fraction d/S0 (hereafter called φ) such that all the stage

peaks corresponding to the reference times tref are above hc(t). To this aim, we propose two

main steps:

1. Class the N reference events (with reference shift times tref ) with respect to the maximum

stage: h
(1)
max < h

(2)
max < ... < h

(N)
max.

2. Fix a value of φ such that the obtained hc < h
(1)
max.

Unfortunately, while parameter b is known for each period delimited by the reference

shift times tref (see previous step), the evolution of b(t) during the �oods is unknown and

challenging to determine. If no precise information is available, a linear interpolation can be

applied to solve this discontinuity (see example in Figure 4.1). Considering the event k we �rst

compute h
(k)
c for the period before the �ood and h

(k+1)
c for the period after. Then the linear
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Figure 4.1: Linear interpolation of the river bed elevation b during a morphogenic �ood event.

interpolation is computed starting from time t
(k)
in (the �rst time before the �ood peak stage

exceeds the threshold h
(k)
c ) until the time t

(k)
f (when stage goes below the threshold h

(k+1)
c for

the �rst time after the �ood peak).

The application of Equation 4.4 to the stage record determines the set of all potential

morphogenic events. Then, the peak of these detected events de�ne the times of the potential

�ood-induced shifts, tpot. Notice that the impossibility of verifying and estimating the

corresponding shifts makes them potential shifts only.

4.2.4 Computation of the sediment transport

In addition to the potential shift times detection, the analysis may also provide an

estimate on the variance of the associated shifts ∆b by establishing a relation between the

cumulative volume of sediment V at the end of each event and the associated shift magnitude ∆b.

Several models have been proposed in the literature to estimate the sediment discharge per

unit of width qs(t) expressed in m2/s. We selected the widely used model for bed load proposed
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by Meyer-Peter and Müller [1948]:

qs(t) =


8
√

ρs−ρ
ρ g d3 [τ∗b (t)− τ∗c ]1.5 , τ∗b (t) > τ∗c

0 , τ∗b (t) ≤ τ∗c
(4.5)

By substituting Equations 4.3-4.4 in Equation 4.5, the bed load equation becomes:

qs(t) =


ψ [h(t)− hc(t)]1.5 , h(t) > hc(t)

0 , h(t) ≤ hc(t)
(4.6)

where coe�cient ψ is equal to ψ = 8
√

ρs−ρ
ρ g d3

(
S0
d

ρ
ρs−ρ

)1.5
. All parameters included in ψ are

�xed to generic values, except for the ratio S0/d which has been calibrated as described in

Section 4.2.3.

The cumulative volume of mobilised material V (k) expressed in m3 computed from the

beginning t
(k)
in to the end t

(k)
f of the morphogenic event k is:

V (k) =

t
(k)
f∑

t=t
(k)
in

qs(t) B ∆t (4.7)

where B is the average active channel width at the hydrometric station.

4.2.5 Estimation of the uncertainty on the potential shifts

The principle behind the relation ∆b ↔ V is that the larger the volume of transported

sediment during a �ood is, the larger the associated potential shift is or at least larger is its

uncertainty. When the volume V is small, the change cannot be large, but when V increases, it

has the potential for being larger. The variance of ∆b is expected to increase with V . Moreover,

the shift can be positive (sediment deposition, hence river bed raise) or negative (erosion, hence

river bed lowering). Therefore to �t the set of (V (k),∆b(k)) pairs we propose the following

probabilistic assumption:

∆b(k) ∼ N (µ(k), σ(k)) (4.8)
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with: 
µ(k) = 0

σ(k) =

√(
σ

(k)
∆b

)2
+
(
ξ V (k)

)2 (4.9)

where σ
(k)
∆b is the standard deviation representing the uncertainty in the shift ∆b(k) (Equation 4.1)

and ξ is a positive parameter that is estimated though a Bayesian-MCMC approach described

in Renard et al. [2006] and in Chapters 2-3. Poorly-informative prior is speci�ed for ξ (e.g.

ξ ∼ U(0, 1)).

In real time, starting from the beginning of the morphogenic event, the uncertainty of RC

parameter b(k) can be updated by accounting for the standard deviation ξ(V ) of the potential

shift. In a Bayesian context the prior distribution of parameter b(k) can be updated (e.g.

assuming a Gaussian distribution) as follows:

b(t) ∼ N

(
µ

(k)
b ;

√(
σ

(k)
b

)2
+
(
ξ V (k)(t)

)2)
(4.10)

To illustrate the method in the next section the proposed sediment transport analysis is

applied to the case study of the Ardèche River at Meyras, France (also treated in Chapters 1

and 2).
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4.3 Application to the Ardèche River at Meyras, France

4.3.1 Information from the station history

For the Meyras station, as described in the previous chapters, a documented knowledge on

the hydraulic con�guration, the stage record, the gaugings and the o�cial dates of RC update

is available for the period between 07/11/2001 and 29/10/2018 [Sikorska and Renard, 2017;

Mansanarez et al., 2019].

Moreover, some e�ective rating shifts for the studied period are proposed in the previous

chapters of this manuscript by the analysis of the gaugings (Chapter 2) and by the analysis

of the stage-recessions (Chapter 3). The combined results are illustrated by vertical dotted

lines in Figure 4.2. All detected rating shifts refer to �ooding events and can thus be related

to sediment transport dynamics, leading to the set of reference morphogenic events with peak

times tref . By analysing the gaugings for this station, Mansanarez et al. [2019] found that

the rating shifts a�ect in particular the elevation of the low �ow ri�e control (b1) and the

mean elevation of the main channel (b2). The ri�e width and channel width and slope (and

consequently, parameters a1 and a2) as well as the �oodplain control are assumed stable.

The BaRatin-SPD method [Mansanarez et al., 2019] is used to estimate parameters b1 and

b2 (illustrated by the horizontal segments in Figure 4.2 and by the boxplots in Figure 4.3) for

each period delimited by tref . Notice that the uncertainty on the parameters b1 and b2 is larger

for period 6. This is because only one high-�ow gauging (the green dot in Figure 4.2) is available

for this period.

4.3.2 Estimation of the triggering stage and detection of all potential

shift times

The detection of all potential morphological shifts is based on the selection of the events

exceeding the triggering stage hc, which is estimated through Equation 4.4. As explained

in Section 4.2.3 the parameter that needs to be "calibrated" is φ = d/S0. By observing the
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Figure 4.2: Stage record of the Ardèche River at Meyras (France) for the period 07/11/2001 - 29/10/2018

illustrating the combined results of the detection of e�ective rating shifts through the segmentation

of gaugings and the recession analysis on the stage record. Moreover the RC parameters b1 and

b2 are estimated through the BaRatin-Stage-Period-Discharge analysis [Mansanarez et al., 2019] and

are illustrated (posterior mean value and 95% uncertainty) with blue and red segments and ribbons,

respectively, for each reference stable period (whose index is indicated below the segments).

Figure 4.3: Posterior boxplots of the RC parameters b1 and b2 estimated for each reference stable periods

of the Ardèche River at Meyras (France) for the period 07/11/2001 - 29/10/2018 through the BaRatin-

Stage-Period-Discharge analysis [Mansanarez et al., 2019].
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hc (ϕ=10) hc (ϕ=20) hc (ϕ=30)

(ϕ=10)

(ϕ=20)

(ϕ=30)

Figure 4.4: Results of the detection of all potential rating shifts tpot caused by sediment dynamics for the

Ardèche River at Meyras station. Three di�erent values of φ = d/S0 are used and compared against the

reference shift times tref (shown on stage record by red open dots).

topography and the available photos of the station, the longitudinal slope may take values

S0 = 0.005 ± 0.002. The river bed material is composed of coarse gravel material, with

characteristic diameter roughly estimated around d = 0.10 ± 0.05 m. Using a Monte-Carlo

propagation of uncertainty, this gives φ = 20.9± 14.7 m.

Due to the large uncertainty on parameter φ three di�erent values of φ in this interval are

tested: φ1 = 10, φ2 = 20, φ3 = 30. The results are illustrated in Figure 4.4. The three sets of

potential morphogenic events, characterised by di�erent values of φ and by h(t) > hc(t), and

whose peaks de�ne the potential shift times tpot, are represented by blue segments. These sets

of potentials shift times can be compared with the reference shift times tref (red segments) and

the corresponding peak values (circles).
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The choice of the proper value of φ can be done through the two steps described in

Section 4.2.3. In particular, Figure 4.4 shows that, while the set of shift times tpot obtained

with φ = 30 misses one of the reference shift times (the last one), both φ = 10 and φ = 20 lead

to set tpot including all tref . The choice between φ = 10 and φ = 20 is subjective, though.

However we may want that the cumulative volume of bed load for the period when h(t) > hc is

large enough. If for example we take φ such that hc = h
(1)
max, the bed load would occur for a too

short time (equal to zero) to induce a river bed shift. With φ = 20, hc is still too much close to

h
(1)
max. However, if we take φ = 10 too many potential shifts are detected. Instead, using φ = 15

can be considered as a good trade-o� between detecting all reference events and detecting other

potentials shifts. Thus, φ = 15 is selected for this application.

4.3.3 Relation between shift ∆b and sediments volume V

The cumulative volumes of sediment V for each potential morphogenic event have been

computed by using Equation 4.7 and by �xing φ = 15 and B = 15 m. They are plotted with

blue bars in Figure 4.5. Several potential events have a large volume but are not associated

with any reference events (whose peaks are identi�ed with circles in the �gure), e.g. the volume

at t = 5500 is larger than the volumes of events 1, 3, 6. This suggests that no change occurred

despite the large transported volume. The sediment dynamics can be very di�erent during each

event leading to di�erent responses: the alternation of scour and �ll processes may cause net

shift very close to zero at the end of the �ood.

Then, the volumes V of the reference events are used as calibration data for the relations

∆b1 ↔ V and ∆b2 ↔ V . Each reference event has been selected as the largest �ood within the

uncertainty interval of the shift time obtained by the segmentation of gaugings (see Chapter 2).

It may happen that several �oods are included within this interval and they are probably

contributing to the rating shift. Therefore we propose that some very close events (separated

by maximum 100 days, the order of magnitude of the shift times uncertainty) are merged in

unique events (see ribbons in pink in Figure 4.5). Notice in particular that reference events 5

and 6 have been merged in a unique event. The e�ective shifts ∆b1 and ∆b2 associated to each

tref are then estimated through Equation 4.1 and used as calibration data for the relations

∆b1 ↔ V and ∆b2 ↔ V illustrated in Figure 4.6.
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Time  [days]

hc (ϕ = 15)

Figure 4.5: Results of the estimation of the cumulative volume of transported sediments after each

potential morphogenic event for the Ardèche River at Meyras, France.

The two relations are very similar since parameters b1 and b2 are found to change in a similar

way at this station. Results reveal that for high volumes the potential shift is estimated at about

± 1 m, which sounds reasonable. An application in real time of this relation during a �ood event

is proposed in Chapter 5.
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Figure 4.6: Relation ∆b1 ↔ V (a) and ∆b2 ↔ V (b) for the Ardèche River at Meyras, France. Calibration

data are the estimated ∆b and V for each reference morphogenic event. The number above the calibration

data represent the index of the reference event. The blue line represents the maximum a posteriori and

the blue ribbon illustrates the total uncertainty at 95 %.
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4.4 Discussion

4.4.1 Main limitations

The applicability of the approach may be restricted to gravel bed rivers. Indeed, for

sandy rivers the estimated triggering water depth may be extremely small which may lead to

the continuous detection of potential shifts. The proposed method should still be applicable

but using sediment transport models more suitable to sand granulometry [e.g. Engelund and

Hansen, 1967] instead of the one proposed by Meyer-Peter and Müller [1948]. However the

formulation proposed by Engelund and Hansen [1967] (frequently used for �ne sediments) does

not include any thresholds for incipient motion. A dynamic modelling of the stage-discharge

relation may be necessary in this case.

Moreover, the calibration of the triggering stage is based on the assumption that all reference

shift times are correctly identi�ed. However this assumption may be wrong, if a shift is missed

or attributed to the incorrect �ood, or if a shift that doesn't exist is detected. The impact that

this issue may have on the results needs to be studied.

Another issue is that the method excludes the breathing phenomena of scour and �ll that

may occur during �oods. To properly study these events a solution may be to apply theoretical

sediment transport modelling under unsteady �ow and unsteady sediment transport conditions

[Davies and Gri�ths, 1996]. However this requires experimental surveys on the sediment size

distribution and on the time-scale of bed deformation. Notice also that during �oods the

variation of the river bed may be complex and may a�ect not only parameter b of the low

controls but also the width of the control or the channel slope, hence parameter a (see the

example in Figure 4.7 of the braided Wairau river at Barnetts Bank in New zealand). However,

detecting in real time changes in the parameter a, based on the stage record only, may be

challenging. On the other hand, photos or videos might be enough for this purpose, since a

change in the width should be easier to observe visually than a bed change.

Another possible issue is related to the merging of multiple morphogenic events. The choice
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Figure 4.7: Aerial view of the Wairau River at Barnetts Bank in New zealand (taken from Mansanarez

et al. [2019]): a braided gravel bed river subject to very frequent �oods causing frequent sudden modi�cation

of elevation and width of the lowest control.

of the maximum inter-event time-lag for merging the events (e.g. 100 days for Meyras) is quite

subjective and case-speci�c. Further work is necessary to improve this step. A solution may be

to merge the events there are located within the uncertainty interval (e.g. at 95 %) of the shift

times obtained from the gaugings segmentation (see Chapter 2).

Moreover, the relations ∆b ↔ V , by using the model described by Equations 4.8-4.9 with

mean equals to zero and standard deviation increasing proportionally with V , successfully

yielded the estimation of the uncertainty on the potential rating shift during �oods. However,

we could also use a linear or proportional model which would provide the trend and the direction

of the morphological evolution (e.g. raising or lowering of the bed elevation).

Finally, the assumption of constant channel longitudinal slope S0 and of constant

characteristic diameter d (hence constant φ) may be too strong in some cases. A sensitiviy

analysis could be done in the future to assess whether this assumption has an impact on the

results or not.
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4.4.2 Use of the method for retrospective purposes

Notice that the objective of this chapter is the fast detection and estimation of potential

rating shifts in the real time context. However, the station managers may be also interested

in the retrospective detection of all past potential rating shifts in order to re-calibrate the RC

for each stable period and reconstruct the historic stream�ow time series. Working with many

near-zero potential changes is not useful and creates practical problems. Filtering out such

minor potential changes would therefore be valuable.

In fact, the condition h(t) > hc(t) does not imply that a net morphological change occurred

but only that the bed sediment transport is initiated. A minimum volume of transported

sediments (Vmin) from the beginning of the event may be necessary to result in a net

morphological change, justifying an update of the RC. Moreover an armouring phenomenon of

the river bed may occur. Sediment transport can start well beyond the triggering stage and

suddenly mobilise a lot of material.

The minimum volume of transported sediments Vmin (necessary for a morphological change)

can be estimated as the minimum volume among the reference events. Then, the manager may

decide to select among all the potential events only those ones characterised by V ≥ Vmin.

4.4.3 Other perspectives

Perspectives of the proposed sediment transport proxy analysis include the tests on more

challenging stations: in particular rivers with sandy bed and continuous bed evolution, and

rivers characterised by frequent �oods. The method to be validated should also be tested on a

station where sediment transport measurements are available.

Finally, the calibration of the triggering stage and the sediment transport, thus the detection

and the estimation of potential shifts, may be performed through a Bayesian method, using a

binary detection index I, where I = 0 if the potential shift is not part of the reference shifts and

I = 1 if it is. This approach may allow a more formal inclusion of the prior knowledge on d/S0
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and may provide uncertainty on the estimates of the cumulative volumes V that is otherwise

ignored. Further work is necessary to test its feasibility and its added value.
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4.5 Conclusion

The method proposed in this chapter for the fast detection of potential shifts uses the stage

record and a proxy sediment transport analysis.

The method is based on the exceedance of a triggering stage. Computing this threshold

requires calibrating a parameter in retrospective such that the triggering stage is exceeded by

all the reference morphogenic �oods detected by other methods (e.g. segmentation of gaugings

and stage-recession analysis). The method yielded encouraging results for the Ardèche River

at Meyras con�rming all reference e�ective shifts. Several other potential morphogenic events

have been identi�ed.

The analysis then proceeds by establishing a relation between the cumulative volume of

transported sediments during the �ood and the associated potential rating shift. This relation

provides quantitative information on the uncertainty of the shift, which can be used in a real

time context. The application on the Meyras case study shows that the method provides a

realistic relation between transported volume and potential change.
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CHAPTER 5

THE REAL-TIME APPLICATION

5.1 Introduction

5.1.1 Retrospective vs Real-time analysis

As expressed in the general introduction, it is sometimes necessary to detect and estimate

rating shifts with the least possible delay in order to obtain more reliable stream�ow data which

may lead to more informed decisions, for example for the following applications:

� during a �ood event for forecasters, a poorly-estimated stream�ow assimilated into a �ood

forecasting modeling chain may compromise its reliability;

� during drought the decision-makers (Water Authorities) must know the stream�ow each

day in order to be able to take orders regulating the use of water resources;

� the minimum environmental �ow downstream of a hydroelectric facility or a nuclear power

plant must be respected continuously, hence known at all times. Upstream stream�ow is

also required in real time for optimizing the production and the safety of the facility.

It is important to draw a clear distinction between real-time and retrospective analyses.

The retrospective analysis is the study of the past hydrometric data (e.g. gaugings, stage

record) which are fully available. In this context there is no need to detect a rating shift right
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after its occurrence. A shift can be detected with a delay of one year for example and then it

is possible to search back for the event most probably associated with the shift (e.g. the most

intense �ood). The detection of rating shifts and the periods of RC stability delimited by the

shift times may then lead to the re-construction of the past hydrograph, which is essential for

several purposes such as �ood frequency analysis and design �ood maps, or to simply classify

the stations into "stable" and "unstable" categories [Morlot et al., 2014] in order to give priority

to the unstable stations when planning gauging campaigns.

On the contrary, the real-time analysis is based on the analysis of any data or information

available in real time to detect a shift while it is occurring or at least as soon as possible after

its occurrence. Real-time analysis should be applicable before any �eld intervention has been

performed. Therefore the real-time analysis cannot only rely on the segmentation of gaugings

(Chapter 2) and the stage-recession analysis proposed in Chapter 3 can be applied only when

the stage is located in a recession period. During a morphogenic �ood the real-time application

should use all kind of information, however uncertain it may be, to suspect a potential shift.

The sediment transport proxy analysis proposed in Chapter 4 is a solution to achieve this, but

other tools may be explored.

5.1.2 Solutions proposed in the literature and main di�culties

Unfortunately, while for the retrospective analysis several methods have been proposed in

the literature (see the introduction of the previous chapters), less information is available on the

management of rating curves in real time, and as far as we know, no formalised and automated

methods have been proposed for this purpose.

The necessity of solving this issue is mentioned by Kiang et al. [2018], Mansanarez et al.

[2019], Le Coz et al. [2017], Puechberty et al. [2017], but they do not propose any general

protocol. In the operational practice, each hydrometric service makes use of expertise and

available shift detection tools but especially of good sense for taking decisions and actions about

the suspicion of a rating shift. A real-time quality check of gaugings and RC is performed but

this remains very empirical, with very little automated procedure to help the operator to detect

and estimate a potential shift during its occurrence.
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The national (French) hydrometry quality plan [Puechberty et al., 2017] proposes to analyze

the stream�ow consistency with another neighboring station to detect a discrepancy either with

upstream-downstream linear regression (on stage or on stream�ow). Alternatively a correlation

analysis can be performed between the estimated stream�ow and the output of a hydrological

model [Garçon, 1996], looking for discrepancies in the correlation [Puechberty et al., 2017;

Lucas, 2018].

However, the basic principle discussed in this chapter is that if we succeed in providing a

warning about a potential rating shift to the operator and to quantify its uncertainty in real

time this would be already an important step forward. However, these estimates will necessary

come with large uncertainties, and they do not intend to replace a new �eld measurement (e.g

gauging, bathymetry) to decrease this uncertainty.

5.1.3 Outline of a real-time procedure

The functioning of such a real-time application should basically be structured around

one or more methods for the detection and estimation of rating shifts and one method

for the RC estimation with uncertainty. All of the traditional and emerging methods for

detecting/estimating rating shifts (including the three methods proposed in the previous

chapters) can be used. These tools should �rst be tested retrospectively by detecting all past

shifts before their application in real time.

The time step of the real-time application depends on the incoming stage frequency.

However many time steps may be needed before being able to detect and estimate an e�ective

rating shift, i.e. a shift for which the magnitude can be estimated. In the meantime, we may

want to use some tools (e.g. the sediment transport proxy analysis proposed in Chapter 4) to

detect the shift as quickly as possible, thus a potential shift, for which the objective is to

estimate its uncertainty, as opposed to its precise magnitude.
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Figure 5.1: General work�ow of the proposed real-time application. The area in green denotes the rating

curve; the area in red denotes the shift detection tools; the area in blue denotes the updating of the

provisional RC.

Let �provisional period� denote the period elapsed between the detection of a potential

shift and its con�rmation or rejection (in general, only the new gaugings or bathymetry

measurements are trustworthy enough to end a provisional period and start a new stable

period).

During the provisional period all intermediate estimated RCs are hereafter called

�provisional RC� because their validity is temporary and need then to be re-estimated

retrospectively once an e�ective rating shift is detected. The provisional RCs represent the

correction of the reference RC hereafter called �base RC� which is the valid RC for the current

period until a new e�ective shift is detected.

The scheme in Figure 5.1 illustrates the general functioning of the proposed real-time

application. Brie�y, the application performs a retrospective analysis on the entire past

available period in order to calibrate the tools used for rating shift detection and to estimate

the initial base RC. Then, the real-time iterations are based on the frequency of the incoming

new stage data h(t). At each time step t the application investigates on the existence of a
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potential or an e�ective rating shift, and possibly estimates its magnitude and updates the prior

knowledge on RC parameters. The iteration ends with the estimation of the provisional RC and

the current provisional discharge estimate Q(t) with uncertainty. Finally if the rating shift is

con�rmed the provisional RC becomes the new base RC and a new period of RC validity begins.

5.1.4 Objectives and structure of the chapter

We propose in this chapter an original protocol for the real-time management of RCs and

the stream�ow estimation especially during the provisional period for stations a�ected by

sudden rating shifts. We propose to combine the tools for the fast detection of potential rating

shifts and the tools for the detection of e�ective ones. This real-time framework is applied to

a real-time re-analysis to one known morphogenic �ood event on the Ardèche River at Meyras

which aims at providing a proof-of-concept demo application. Sub-objectives include setting up

the analysis chain, illustrating several situations that can be encountered in practice (in terms

of available information and possible decisions) and gaining a �rst experience on what such a

real-time procedure might look like in practice, including foreseeable challenges.

Section 5.2 describes each step of the real-time application. Section 5.3 shows the results of

a prototype of the proposed real-time application on one �ood event. Section 5.4 discusses the

results of this demo along with the main limitations and the avenues for future work. Section 5.5

summarises the main �ndings of the proposed real-time application.
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5.2 The proposed real-time application

The steps of the proposed general method for the real-time management of unstable RCs are

schematized in Figure 5.1 and detailed in the following subsections.

5.2.1 Initialisation: hydraulic analysis

The application starts at time t0 by performing the hydraulic analysis of the station to get

some knowledge on the hydraulic and geometric properties of the river stretch: the average

geometry of the cross and longitudinal sections; the roughness and composition of the bed

material, the number, the type and the succession of the elementary hydraulic controls de�ning

the RC model.

5.2.2 Retrospective analysis

After the hydraulic analysis and before starting the real-time iterations, a retrospective

analysis is performed on the entire past period searching for all past rating shifts (and hence

identifying all periods of RC stability), with three main objectives:

� Identify the type and the causes of the past rating shifts and the identi�cation of the most

unstable RC parameters. This is important for the selection of adequate tools for the

rating shift detection and estimation in real time.

� Calibrate the tools for the shift detection and estimation to be used in real time.

� Estimate the "base RC" at the initial time t0 of the real time application. To this aim

we could use one of the methods proposed in the literature for the estimation of RC with

uncertainty [Kiang et al., 2018] applied to the last stable period before t0. However the

"stage-period-discharge" method proposed by Mansanarez et al. [2019] is preferred since it

allows the transfer of information across the periods through the common RC parameters,

which is particularly important for periods with very few gaugings.

As will be explained in Section 5.2.8, this retrospective analysis is also performed every time

that the beginning of a new stable period is declared.
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5.2.3 Incoming stage data

While for the retrospective analysis the entire data sets of past gaugings and stage record

are available, in the real time iterations the input data are unending sequence of high-frequency

stage observations and low-frequency gaugings. Since the detection tools developed and used in

this manuscript for fast detection of potential rating shifts are mostly based on the stage record,

the real-time step ∆t is adapted to the frequency of the incoming stage (e.g. 15 minutes). In

this manuscript the stage data are assumed not a�ected by any instrumental error, but this

assumption is discussed in Section 5.4.2.

5.2.4 Shift detection

Once the new stage data have been received, the application proceeds by investigating the

RC stability at time t. To this aim the proposed application makes use of all available tools for

rating shift detection and estimation. By default these tools are kept on stand-by until some

prede�ned threshold is exceeded or some conditions are met. In this manuscript three tools are

used:

� During �oods, when the stage exceeds the triggering stage for incipient motion (see

Chapter 4) the tool based on the sediment transport proxy analysis is activated and a

potential rating shift is detected.

� During stage recessions, after a few consecutive days of recession, the tool based on the

stage-recession analysis is activated. As described in Chapter 3, this analysis allows

detecting a shift but also estimating its magnitude.

� If a new gauging is performed between two time steps then it is added to the gaugings

data set of the base RC and used as input for the detection of e�ective rating shifts, as

described in Chapter 2.

We stress that any rating shift detection tool and on-site information on the shift (photos,

witnesses) can be used at this step.
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5.2.5 Shift estimation

If no rating shifts have been detected using the available tools at time t then the priors for

the RC parameters are not updated and the base RC is kept invariant. On the contrary, if a

rating shift has been detected the validity of the current base RC is ended and a provisional

period begins. In this case the real-time application proceeds with the estimation of the shift

magnitude, when it is possible.

As regards the stage-recession analysis, if a shift is detected, the time series of the asymptotic

stages β is segmented by applying the segmentation model with 2 prede�ned segments: one

segment for the past recessions (which belong to the stable period before the shift) and one

segment for the ongoing recession, thus with only one point (which belongs to the provisional

period during/after the shift), with uncertainties. The di�erence between the two segment

means is used to estimate the shift of the RC parameter b (o�set of the low �ow control) at time

t obtained from the recession analysis:

∆brec(t) ∼ N

(
µβ(t)− µ∗β,

√
(σβ(t))2 +

(
σ∗β

)2
)

(5.1)

where µβ(t) and µ∗β indicates the mean of the estimated parameter β for the current

provisional period at time t and for the past stable period, respectively, while σβ(t) and σ∗β are

their standard deviation.

The sediment transport proxy analysis leads to the estimation of potential shift of parameter

b at time t, by using the relation between the cumulative sediments volume and the magnitude

of the potential shift (as described in Chapter 4):

∆bST (t) ∼ N (0 ; ξ V (t)) (5.2)

where the mean of the shift is zero (corresponding to a potential change), unlike in

Equation 5.1, and the standard deviation is proportional to the cumulative sediment volume

V (t) computed from the beginning of the �ood event tin to time t.

As regards the segmentation of gaugings, the inclusion of a new gauging does not directly
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provide the estimate of a shift of a speci�c RC parameter. The rating shift can be estimated

only after the estimation of the provisional RC (where the new gauging is used as calibration

data) by comparing the RC parameters of the past base RC and those of the actual provisional

RC.

Finally, it may happen that at time t more than one tool lead to the estimation of the rating

shift (e.g. ∆bST (t) from the sediment transport proxy analysis, ∆brec(t) from the stage-recession

analysis). In this manuscript the combined shift estimate ∆b(t) is equal to the shift estimate

having the smallest standard deviation, but alternative choices are discussed in Section 5.4.3.2.

5.2.6 Update of RC priors and RC estimation

The RC estimation is here performed through a Bayesian approach, which requires

the gaugings and the prior distributions of the RC parameters and provides their posterior

distributions. In the real-time context at time t we could have the four main following situations:

1. No detected shift and no new gaugings: the RC priors are taken equal to the posteriors of

the current base RC, thus in fact the estimated RC is equal to the base RC.

2. No detected shift and a new gauging: BaRatin method [Le Coz et al., 2014] is used for

the RC estimation by using the new gauging and transferring information (on the RC

parameters) from the base RC through the prior speci�cation.

3. Shift detected by the gauging segmentation: in this case we enter in a provisional period

and the validity of the base RC is ended. All the past gaugings now belong to the past

base RC. Only the new gauging is used to estimate the provisional RC at time t. The

BaRatin-SPD developed by Mansanarez et al. [2019] can be used to allow the transfer of

the information on the parameters in common between the past base RC and the current

provisional period. Assumptions on the stable and unstable RC parameters are necessary:

e.g. all parameters remain unchanged except for parameter b of the low �ow control. Since

no estimate on ∆b is available a weakly informative prior is speci�ed for b.

4. Shift detected and estimated (e.g. using the tool based on the stage-recession analysis or

on the sediment transport proxy analysis): the prior on the corresponding unstable RC
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parameter (e.g. b(t)) needs to be updated as:

b(t) ∼ N
(
µ∗b + µ∆b(t);

√(
σ∗b
)2

+ (σ∆b(t))
2

)
(5.3)

where µ∗b and σ∗b are the posterior mean and posterior standard deviation, respectively,

of parameter b from the base RC right before the beginning of the provisional period,

and µ∆b(t) and σ∆b(t) are the mean and the standard deviation, respectively, of the shift

estimate ∆b(t) during the provisional period at time t. If there are not new gaugings then

the RC estimation is done through prior propagation, otherwise it is performed by using

the BaRatin method.

5.2.7 Discharge computation

The new RC is used to compute the discharge Q(t) (the main output of each time iteration).

This is a standard RC procedure in hydrometry and leads to the most probable value of Q(t)

(MAP) and its uncertainty [Le Coz et al., 2014].

5.2.8 Start of a new stable period

At the end of the real-time iteration, after having provided the provisional RC and the value

of discharge at time t, we need to decide whether or not a new stable period starts after this

iteration. Considering the situations described in the previous step:

� For situations 1 nd 2, the stable period is still ongoing.

� For situations 3 and 4, the provisional RC becomes the new base RC only if there are

new gaugings. In this case a new retrospective analysis is performed with the addition of

the newly detected shift information to update the calibration of the tools for rating shift

detection. When there are no new gaugings the provisional period proceeds.

The next section illustrates a prototype of the proposed real-time method applied to the case

study of the Ardèche River at Meyras in France during one �ood event.
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5.3 Application to the Ardèche River at Meyras: a demo

5.3.1 Overview of the application

A real-time re-analysis is applied to one morphogenic �ood event at the Meyras station on

the Ardèche River (France). The hydraulic analysis and the retrospective analysis are performed

at time t0. A truly real-time context is studied, by fully ignoring any data that would not be

available at time t0. The retrospective analysis detects and estimates all past rating shifts in

order to calibrate the shift detection tools and estimate the stable RC at t0. Next, the crucial

real-time conditions for the studied event are:

� A �rst period where the RC is stable and equal to the base RC (no shifts are detected).

� The occurrence of a morphogenic �ood inducing a potential rating shift. The sediment

transport proxy model proposed in Chapter 4 is used to provide an estimate on the potential

shift uncertainty. Consequently the RC uncertainty increases as the cumulative volume of

transported sediments increases.

� A recession period after the �ood peak. The stage-recession analysis proposed in Chapter 3

is used. The longer the recession period, the more precise the estimation of the asymptotic

stage becomes, and consequently the RC uncertainty may be re�ned with time.

� Finally the arrival of new gaugings may con�rm or dismiss the rating shift previously

detected. The segmentation procedure applied to gaugings and proposed in Chapter 2 is

used to this aim. If the shift is con�rmed, then a new RC stable period begins.

Figure 5.2 illustrates the selected period for the analysis, subdivided in two parts by the

initialization time t0: the retrospective analysis and the real-time analysis. t0 is chosen such

that the RC stability is ensured: no �oods located nearby, no new gaugings since the previous

stage data and a very low stage value.

5.3.2 The retrospective analysis

The retrospective analysis has been performed on the stage record and the gaugings

preceding t0. The results are summarised in Figure 5.3.
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Figure 5.2: Selection of the period for the real-time analysis (in red) as well as for the retrospective

analysis (in blue) applied to the Ardèche River at Meyras. The real-time initialisation of the application

is indicated by the time t0. Points on the stage record indicate the gaugings.

The stage-recession analysis is here performed using the model and the parameter χ that

lead to the most accurate estimation of shift times and magnitudes for the application of

Chapter 3: M2 (two superposed exponential terms and one asymptotic stage parameter),

χ = 50 cm and all other options for the stage-recession extraction used in the application of

Chapter 3. Then, the posterior distributions of the common parameters of the stage-recession

model will be used as priors for the recession estimation during the real-time iterations, as

described in Section 3.4.2 of Chapter 3.

The combined results of the segmentation of gaugings and of the stage-recession analysis

are used to de�ne the four RC stable periods of the retrospective period. A BaRatin-SPD

analysis [Mansanarez et al., 2019] is performed to estimate the RC for each period (Figure 5.4a).

Figure 5.4b also shows the boxplots of the estimation of RC parameters b1 (mean elevation of

the natural ri�e) and b2 (mean elevation of the main channel bed), assumed to be the only two

unstable parameters for this case study.
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Figure 5.3: Results of the retrospective analysis applied to the Ardèche River at Meyras in terms of

the detected shift times (and their pdfs). Three tools have been used: the segmentation of gaugings, the

stage-recession analysis for detecting e�ective rating shifts and the sediment transport proxy analysis for

detecting potential rating shifts.

These combined results are then used to calibrate the sediment transport proxy analysis.

Firstly, the triggering stage hc is computed and reported in green in Figure 5.3. This leads to

the detection of several other potential rating shifts. Secondly the sediment transport, and in

particular its cumulative volume, is computed. A relation between the cumulative volume of

sediments transported during the morphogenic event and the associated potential rating shifts

∆b1 and ∆b2 is then established (as described in Chapter 4) and shown in Figure 5.5. At this

stage, only three calibration data (V,∆b) are available.

Finally, the BaRatin-SPD analysis [Mansanarez et al., 2019] also provides the estimate of

the stable rating curve (base RC) preceding the initialisation and still valid at time t0. The

initial conditions of the real-time application, including the data and the RC of the last stable
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a) b)

Figure 5.4: a) Estimation of the RC for each of the four past stable periods using BaRatin-SPD

[Mansanarez et al., 2019]. Colors correspond to Figure 5.3. b) Boxplots of RC parameters b1 and b2

for each period.

Figure 5.5: Results of the retrospective sediment transport analysis applied to the Ardèche River at Meyras:

relation between the cumulative sediments volume V and the rating shifts ∆b1 and ∆b2. The blue ribbon

illustrates the total 95 % uncertainty interval for the shift. The number above the points indicate the

indexes of the reference morphogenic events.
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period, are illustrated in Figure 5.6.

More speci�cally, Figure 5.6A reports the discharge time series Q(t) with uncertainty and the

stage record h(t) for the last stable period preceding the initial time t0 (indicated with a vertical

red line). Also the past gaugings are shown by dots and the triggering stage hc for the detection

of morphological shifts (see Chapter 4) is reported against the stage record (by green dashed line).

Figure 5.6B shows the current base RC with total uncertainty valid at time t0. The

intersection of the two dashed black segments indicates the current position along the RC.

Figure 5.6D shows a very schematic representation of the river cross-section in order

to visualize the current hydraulic conditions. Elevation z indicates the elevation with

respect to the zero of the stage recording instrument. Water �owing through the river is

represented in light-blue (however time t0 is characterised by very low-�ow conditions thus

the water table is very close to the main channel bed). The triggering stage hc is also represented.

Finally Figure 5.6C represents the shift detection toolbox, where the results of the three

tools proposed in this manuscript for rating shift detection are presented. For each tool, on the

top-right corner of the plot, a tra�c light is used to indicate whether the tool is activated or

not. In particular, the light is:

- green: the tool is on stand-by;

- yellow: the tool is activated but no rating shift is detected

- red: the tool is activated and a rating shift is detected

The proposed application makes use of (from top to bottom of Figure 5.6C):

� the segmentation of the residuals between the gaugings and the base RC (procedure

described in Chapter 2). If no new gauging is performed then no rating shift warning

is provided by this tool keeping the light on "green". For the next time iterations every

time that a new gauging is performed, its residual with respect to the base RC (with

uncertainty) is then computed and plotted here and the light is turned on "yellow". The
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segmentation procedure is then applied to the time series of the residuals looking for one

shift. The mean of the residuals is reported by the horizontal red segment.

� The sediment transport proxy analysis (see details in Chapter 4). If the current stage is

below the triggering stage hc no potential rating shifts are detected by this tool and the

light is kept on "green". The volume of transported sediments V in this case is equal to

zero. Instead, when the actual stage exceeds the triggering stage hc, the light is turned

on "red" warning for a potential rating shift. The sediment transport volume is in this

case larger than zero and the relation in Figure 5.5 is used to estimate the uncertainty of

the potential shifts ∆b1 and ∆b2, thus to increase the uncertainty on corresponding RC

parameters.

� the stage-recession analysis (Chapter 3). If the current stage is not in a recession period

then no warning for rating shift is provided by this tool, keeping the light on green. Instead,

when the current stage is located in a recession period then the new stage data is plotted

and the light is turned on "yellow". If the number of the stage-recession data and the

duration of the recession period are larger then the minimum number Nmin and minimum

duration tmin, respectively, then the stage-recession analysis is performed.

Subsequently, each new incoming stage data de�ne the following iterations of the real-time

application. The following subsections will focus on the most crucial iterations.

Matteo Darienzo 126/174



5.3. Application to the Ardèche River at Meyras: a demo

t = 3602.84

0.01

0.1

1

10

100

1000

3400 3600 3800 4000

D
is

ch
ar

ge
 Q

 [ 
m

3 s−1
 ]

hc

−1

0

1

2

3

4

5

3400 3600 3800 4000

Time [days]

S
ta

ge
 h

 [m
]

A

0.01

0.1

1

10

100

1000

−1 0 1 2 3 4

Stage [h]

D
is

ch
ar

ge
 Q

  [
 m

3 s−1
 ]

RC total 
 uncertainty (95 %)

Gaugings of the 
 past RC periods
Gaugings of the 
 current base RC
Most probable RC 
 (MAP)

B

−10

−5

0

5

10

15

3400 3600 3800 4000

Time [days]

R
es

id
ua

l r
 

In
iti

al
iz

at
io

n

0

10000

20000

30000

40000

50000

3400 3600 3800 4000

Time [days]

V
 [ 

m
3  ]

β

past 

 recessions
past

−100

0

100

200

0 20 40 60 80 100 120

Recession time [days]

S
ta

ge
 [c

m
]

C

Scheme of the river cross−section

hc

0

2

4

6

−20 −10 0 10 20

x [m]

z 
[m

]

D

Figure 5.6: Results of the proposed real-time application to the Ardèche River at Meyras from the

initialization time 3600. A) discharge and stage time series B) RC with uncertainty and gaugings, C)

toolbox with three tools for rating shift detection, D) schematic representation of the river cross-section

geometry. Iteration 0.
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5.3.3 Iteration 15: recession analysis but no shift

Figure 5.7 illustrates the results for iteration 15. In the �rst period that follows the initial

time t0 the stage is located in a recession period and much below the triggering stage (hence

there is no �ood and the tool based on the sediment transport analysis is on stand-by).

Moreover no new gaugings are performed, thus the tool based on the segmentation of gaugings

is on standby.

Instead since the stage is decreasing the tool based on the stage-recession analyses is activated

(light is turned on yellow) and since the recession is longer than 5 days the stage-recession

estimation is performed. The uncertainty of the recession curve is represented in green. The

asymptotic stage parameter of the current recession β is represented with a green dot with error

bars. The segmentation of the time series of the current and past estimates of parameter β does

not detect any shifts, mainly because of the large uncertainty of the recession estimation. Thus,

the base RC is still valid.
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Figure 5.7: Same as Figure 5.6 for iteration 15.

129/174 Matteo Darienzo



Chapter 5. The real-time application

5.3.4 Iteration 16: recession analysis and new gauging but no shift

Figure 5.8 illustrates the results for iteration 16. At this iteration the stage is still located

in a recession period below the triggering stage, a new stage-recession regression is performed

but still the segmentation of the time series of the estimates of β does not detect any shifts.

However between the previous and actual iteration a new gauging has been performed. It is

added to the gaugings data set of the current stable period. The tool based on the segmentation

of the residuals between the gaugings and the base RC is activated and the light turns on yellow.

The tool does not detect any shifts. However the base RC is re�ned accounting for the new

gauging.
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Figure 5.8: Same as Figure 5.6 for iteration 16.
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5.3.5 Iteration 82: exceedance of the triggering stage and detection of a

potential shift

Figure 5.9 illustrates the results for iteration 82. At this iteration the stage-recession

analysis cannot be performed because the stage is increasing, thus the tool is kept on standby.

Moreover, no new gaugings have been performed thus also the tool based on the segmentation

of gaugings is kept on standby.

Instead, the stage h(t) slightly exceeds the triggering stage hc(t) for sediment incipient

motion. Hence, a potential �ood-induced rating shift is detected and the tool based on the

sediment transport analysis is activated (red light). This iteration de�nes the beginning of a

morphogenic �ood event. The volume of transported sediments cumulated from the beginning

of the event V (t) is computed through the proxy model described in Chapter 4. This tool

provides also an estimate on the uncertainty of the rating shift through the relation V −∆bST

established in retrospective (Figure 5.5), so that for each value of V corresponds an estimate of

the shift magnitude ∆b and in particular of its uncertainty.

The priors of parameters b1(t) and b2(t) are thus updated accounting for the rating shift

using Equation 5.3 with σ∆b1(t) and σ∆b2(t) around 0.0003 m and V = 28 m3. At such an early

stage of the �ood, the potential shift cannot be too large. However, since the available gaugings

are now potentially not valid anymore, the base RC is obsolete and the new provisional RC is

now estimated through prior propagation only.

Matteo Darienzo 132/174



5.3. Application to the Ardèche River at Meyras: a demo

t = 3647.44

0.01

0.1

1

10

100

1000

3400 3600 3800 4000

D
is

ch
ar

ge
 Q

 [ 
m

3 s−1
 ]

hc

−1

0

1

2

3

4

5

3400 3600 3800 4000

Time [days]

S
ta

ge
 h

 [m
]

A

0.01

0.1

1

10

100

1000

−1 0 1 2 3 4

Stage [h]

D
is

ch
ar

ge
 Q

  [
 m

3 s−1
 ]

RC total 
 uncertainty (95 %)

Gaugings of the 
 past RC periods
Gaugings of the 
 current base RC
Most probable RC 
 (MAP)

B

−10

−5

0

5

10

15

3400 3600 3800 4000

Time [days]

R
es

id
ua

l r
 

In
iti

al
iz

at
io

n

0

10000

20000

30000

40000

50000

3400 3600 3800 4000

Time [days]

V
 [ 

m
3  ]

β

past 

 recessions
past

−100

0

100

200

0 20 40 60 80 100 120

Recession time [days]

S
ta

ge
 [c

m
]

C

Scheme of the river cross−section

Potential rating shift !

hc

0

2

4

6

−20 −10 0 10 20

x [m]

z 
[m

]

D

Figure 5.9: Same as Figure 5.6 for iteration 82.
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5.3.6 Iteration 191: �ood peak

Figure 5.10 illustrates the results of iteration 191. This iteration is similar to iteration

82. However the stage h(t) is now well above the triggering stage hc(t) and the volume of

transported sediments cumulated from the beginning of the event V (t) is much larger than in

iteration 82. The relation V −∆b (Figure 5.5) is used to estimate the rating shift ∆bST (t) and

in particular its uncertainty.

As for iteration 82 the RC is merely estimated through a prior estimation by updating the

priors of parameters b1(t) and b2(t) of the base RC using Equation 5.3. However, at this iteration

σ∆b1(t) and σ∆b2(t) assume values around 0.17 m and V = 21520 m3, thus the uncertainty of

the new provisional RC (and consequently of the discharge) is now very large. The uncertainty

on prior b2 is also illustrated with a red ribbon in Figure 5.10D.
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Figure 5.10: Same as Figure 5.6 for iteration 191.
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5.3.7 Iteration 287: application of the stage-recession analysis after the

�ood

Figure 5.11 illustrates the results of iteration 287. At this iteration no new gaugings are

performed thus the tool based on the segmentation of gaugings is kept on standby. Instead,

the stage is located in a recession period after the �ood peak, with a length larger than 5 days.

Thus a stage-recession analysis can be performed. The estimated recession is illustrated in green.

Then, the segmentation of the estimated asymptotic level parameters β does not lead to the

detection of any shift. Even though the recession analysis does not detect at this iteration a

rating shift, it does provide a valuable uncertainty ∆brec(t) on it as de�ned by Equation 5.1. If

this uncertainty is inferior to the one obtained through the sediment transport analysis ∆bST (t)

it can be used to re�ne the prior on b1(t) and b2(t) as explained in Section 5.2.5. Thus also the

new provisional RC shows a smaller uncertainty compared with the previous iterations.
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Figure 5.11: Same as Figure 5.6 for iteration 287.

137/174 Matteo Darienzo



Chapter 5. The real-time application

5.3.8 Iteration 311: new gauging and rating shift con�rmation

Figure 5.12 illustrates the results of iteration 311. At this time step a new gauging has

been performed. Thus, the tool based on the segmentation of gaugings is activated. A shift is

detected. Thus the ligth is turned on "red". This corresponds to an e�ective rating shift, which

means that the provisional period is ended and that a new base RC can be estimated using the

new gauging.

The stage is still located in a recession period, thus the estimation of the rating shift ∆brec

is used to update the prior before the RC estimation with the new gauging. The new gauging

con�rms the potential rating shift previously detected by the sediment transport analysis and

re�nes the estimation of parameters b1 and b2. The estimated shifts ∆b1 and ∆b2 are quite

small, around -0.066 m and -0.092 m, respectively. This possibly explains why the change

wasn't detected by the stage-recession analysis.

This time step determines the beginning of a new stable period.

5.3.9 Summary of the application

In conclusion, during this application we have tested the tools for rating shift detection in

real time during a morphogenic �ood event known to have caused a minor shift of the RC. The

tool based on the segmentation of gaugings does not detect any shifts when there are no shifts

(before the �ood) and instead detects the minor shift when the �rst gauging is performed after

the �ood. The sediment transport analysis properly detects a potential rating shift which is

con�rmed subsequently. Moreover the estimation of the shift uncertainty through the relation

V − ∆b provides a useful information on the RC uncertainty during the �ood. On the other

hand the tool based on the stage-recession analysis shows some di�culties in detecting a minor

shift. However, it provides a very useful information on the rating shift uncertainty which may

reduce the one provided by the sediment transport analysis, leading to more reliable stream�ow

uncertainty.
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Figure 5.12: Same as Figure 5.6 for iteration 311.
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5.4 Discussion

5.4.1 Main limitations

While the scheme of the proposed application for the real-time management of rating shifts

is conceived to account for general real-time situations, it still have some limitations. Some of

these limitations are related to the tools used for the shift detection and are already discussed in

the previous chapters. More speci�cally related to the real-time framework itself, the structure

of the proposed method is conceived for the management of rating shifts only. Instead, managing

transient shifts, such as those induced by the growth/decline of aquatic vegetation, may require

a dynamic RC modelling [Perret et al., 2021] which, in turn, may require a speci�c adaptation

to the real-time context.

5.4.2 Stage pre-treatment

In this application the uncertainty in the stage input data is ignored. However, this

uncertainty may sometimes be not negligible [Horner et al., 2018], especially in a real-time

context. The stage observation may be a�ected by a general noise (due to instrument sensitivity

or to the water surface oscillations induced by high �ow conditions) that need to be �ltered

out, or by instrumental bugs (due to data logger issues or to icing conditions) that need to be

corrected before the stage can be exploited (Figure 5.13).

Future perspectives of the proposed method include some pre-treatments of the raw stage

measurements. Figure 5.13 schematizes three possible situations discussed in Puechberty et al.

[2017]:

1. The instrument breaks down or is frozen, then the stage raw signal appears frozen too. As

long as the instrument is out of order, no correction of the signal is possible. A solution

needs to be found to provide stream�ow estimate during this latent period.

2. Sudden instrumental bugs may also occur causing invalid aberrant stage values. These

bugs can easily be corrected retrospectively by interpolation (on short periods at least),

but this issue is more challenging in real time.
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Figure 5.13: Stage errors examples. Adapted from Puechberty et al. [2017].

3. Moreover sensors may sometimes need to be re-calibrated and the stage data need to be

retrospectively corrected.

5.4.3 Future perspectives

5.4.3.1 More thorough evaluation of the method

Several possible improvements and tests are planned for future work. Before its operational

implementation the proposed real-time application certainly needs several validation tests in

order to better understand its performance and its applicability conditions.

The proposed application needs to be tested on several other case studies preferably

characterised by di�erent hydraulic con�gurations (possibly more complex than the one of

Meyras, such as twin-gauge stations), by di�erent hydrological behavior (such as those with

high-frequency �oods) and by di�erent sediment transport characteristics (di�erent grain-size

distribution).
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Figure 5.14: Example of two approaches for combining two distinct individual priors on the same rating

shift ∆b.

5.4.3.2 Combining the shift estimates from multiple sources

It may happen at some iterations that multiple sources of information are available about

the rating shift. Therefore we may want to aggregate the di�erent probability estimates. The

issue of combining di�erent "opinions" has been studied in the literature: e.g. by Genest and

Zidek [1986] or more recently by Albert et al. [2012] and Dietrich and List [2014]. However no

unique and general solutions have been provided yet.

Figure 5.14 proposes an example of two possible approaches for combining the prior on the

rating shift obtained from the stage-recession analysis ∆brec ∼ N (µ∆brec , σ∆brec) with the one

obtained by the sediment transport proxy analysis ∆bST ∼ N (µ∆bST , σ∆bST ) into an unique

prior by:

1. considering the product of the two pdfs (consensus prior) which in this case is also Gaussian.

2. averaging the two pdfs (mixture prior).

Further work is needed to apply the approaches proposed in the literature to the real-time

operational management of RCs.

Matteo Darienzo 142/174



5.4. Discussion

5.4.3.3 Adding other tools for detecting rating shifts

Other tools for rating shift detection and estimation are planned to be developed in future

work and are further discussed in Chapter 6, such as:

- correlation analysis with the output of a rainfall-runo� hydrological model or with the

discharge record of the hydropower plants [Puechberty et al., 2017];

- correlation analysis with the surface velocity measure by means of non-contact techniques

(e.g. radar, Thollet et al. [2017]).

- on-site bathymetric surveys;

- other �eld observations (e.g. presence of dams built by beavers or swimmers; data logger

bugs);

- information about mining operations in the river bed or civil works a�ecting the �ow.

143/174 Matteo Darienzo



Chapter 5. The real-time application

5.5 Conclusion

The proposed method for the real-time management of unstable rating curves is based on

the application to the real-time context of the available tools for rating shift detection and

estimation, and of the available tools for RC estimation with uncertainty.

Each iteration is based on the incoming new stage data, then it applies the aforementioned

tools searching for a rating shift (potential or e�ective) and it eventually updates the RC with

the estimation of a provisional RC, which in the Bayesian context is done by updating the prior

speci�cation. When an e�ective shift is estimated then a new base RC is de�ned and a new

stable period begins.

The method has been applied to the case study of the Ardèche River at Meyras during one

morphogenic �ood event. The application yielded promising results with the detection of the

potential shift by the sediment transport proxy model and the re�ning of the RC uncertainty by

the stage-recession analysis and �nally the con�rmation of the shift by the �rst gauging. However,

these results cannot be generalized yet. Further work is needed to test the performance of the

method on several other case studies with di�erent characteristics and de�ne the applicability

limitations.
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CHAPTER 6

CONCLUSIONS AND PERSPECTIVES

6.1 Summary

In this dissertation the issue of unstable rating curves is investigated. In particular

three original tools for the detection and estimation of rating shifts are proposed. They are

a continuation of the PhD work of Valentin Mansanarez [Mansanarez, 2016] who developed

the Stage-Period-Discharge method leading to the estimation of the multiple RCs at known times.

The �rst tool has been developed for the detection and estimation of e�ective rating shifts

using the gaugings. It is based on an original recursive segmentation procedure applied to

the time series of the residuals computed between the gaugings and a reference RC. In this

segmentation method there are no assumptions on the number of homogeneous segments.

Moreover its originality is to account for the uncertainty of the data (here, the gaugings

residuals) which may have large and variable uncertainty. This avoids detecting false shifts, as

demonstrated through the application to several synthetic data sets. Finally it also provides

useful information about the uncertainty on the shift times, which allows searching for the

causal event, e.g. the largest �ood. Finally, the proposed segmentation procedure may be

applied beyond the �eld of hydrometry to a wide range of problems. Some examples are

reported in Section 6.2.1.1.
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The second tool has been developed to detect and estimate e�ective shifts using a stage-

recession analysis. Its originality is mainly to apply for the �rst time in hydrometry the

recession analysis concepts, broadly studied in the literature, to the stage record instead of

the stream�ow record. The main assumption is that the stage-recession curve tends toward

the elevation of the lowest control as stream�ow tends toward zero and that a morphological

change of the river bed induces a parallel change of this asymptotic stage. After having

estimated all the available recession curves, the same segmentation procedure that was

applied to the gaugings residuals is applied to the time series of asymptotic stage estimates.

The method leads not only to the detection of a rating change but also to estimate its amplitude.

The �rst and second tools are limited for real-time applications since they need information

(gauging, recession) that is only occasionally available in real time. For the same reason, these

tools may miss rating shifts in the retrospective analysis. Thus a third tool has been proposed

in this manuscript to detect potential rating shifts. While for e�ective shifts the magnitude

can be estimated precisely enough, for potential shifts the primary objective is to estimate its

uncertainty. This tool is based on a sediment transport proxy analysis using as input the stage

record available in real time. The shift detection is issued when stage exceeds a triggering stage

for incipient motion which is calibrated in retrospective by analysing all past rating shifts and

the corresponding morphogenic �oods. Then, a relation established between the cumulative

volume of transported sediments (computed using classical models) and the past shift estimates

can be used in real time to provide an uncertainty estimate on the detected potential shift.

The advantages of using this approach are that it detects a potential shift while it is occurring,

without delay, and that it requires only the stage record and some knowldege on the past rating

shifts.

The three tools have been applied initially for the retrospective detection of rating shifts

and identi�cation of the stable periods. This may allow the managers of a station to review

the historical series of hydrometic data and to reduce the number of stable periods when a

conservative analysis led to over-segmentation of the periods (e.g. after each �ood).

Finally the proposed methods are implemented together into an original framework for the
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real-time management of shifts a�ecting the rating curves and the stream�ow estimation. Such

real-time scheme is an original outcome of this thesis work since it was never formally developed

before in the hydrometry �eld. As a proof-of-concept, the method has been applied to the station

of the Ardèche River at Meyras in France during a morphogenic �ood. The combination of the

three tools for shift detection and estimation yielded promising results and showed that they

can be successfully used at least for gravel bed rivers a�ected by morphogenic �oods. However

further work is needed to validate the method and demonstrate its operational applicability, in

particular by testing it on several other stations. The scheme of the proposed framework is also

conceived to be general, thus other potential shift detection criteria can be included as detailed

in the following perspectives sections.
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6.2 Perspectives

The proposed tools for rating shift detection and estimation could be further improved in

the future. Some ideas are discussed in the next subsections.

6.2.1 Improvement of the proposed tools for rating shift detection

6.2.1.1 Segmentation of gaugings

The tool based on the segmentation of the gaugings residuals could be improved by de�ning

the most suitable criterion used for determining the optimal number of segments, among several

proposed in the literature. The simulations using synthetic data in Chapter 2 have shown

that the segmentation is sensitive to the chosen criterion. The criteria that yield the highest

performance are the DIC and the BIC. A better understanding of the di�erences between BIC

and DIC is needed in future work.

Finally, as a general perspective, the proposed segmentation procedure could probably be

extended to other �elds where the relation between two observed variables, estimated using

uncertain calibration data, is subject to sudden changes. As an example, Figure 6.1 shows

the results of the proposed segmentation method applied to the relation turbidity vs Total

Suspended Sediment concentration. More generally, the proposed method could be used for

segmenting uncertain time series. It can be applied to test the homogeneity of the series used

for the analysis of the distributions of �oods and droughts. It has been used in a recent report

[Lang, 2020] to study the �oods on the Rhine River and shows its utility in the case of data with

uncertainty strongly varying in time (cf. historical �oods, see Figure 6.2).

6.2.1.2 Stage-recession analysis

Chapters 3 and 5 have shown the value of the stage-recession analysis for detecting and

estimating morphological changes. However while several recession models are proposed and

applied for the retrospective analysis in Chapter 3, only one recession model has been applied in
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Figure 6.1: Segmentation procedure proposed in Chapter 2 applied to the relation Turbidity vs Total

Suspended Sediment concentration (MES in french) for the Arc River at Pontamafrey in France for the

period 2011-2019.

Figure 6.2: The proposed segmentation procedure applied to the series of maximum annual discharge for

the Rhine River at Maxau (Karlsruhe, Germany) during the period 1947-2017 [Lang, 2020]. Red and

pink ribbons show the parametric and total uncertainty, respectively, of the segments mean. The shift

time is represented by a dashed line and by its pdf in the graph below.
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the real-time application. The most suitable recession model might be di�erent in retrospective

and in real time. Further work is necessary in order to test other models in real time.

Other interesting perspectives include applying the stage-recession analysis to several case

studies in order to provide some statistics on the stable parameters of the recession model (such

as the recession rate λ), searching for hydrological signatures (as studied in the PhD thesis of

Horner [2020]).

6.2.1.3 Sediment transport proxy analysis

According to the method proposed in Chapter 4, the criterion used for detecting potential

shifts is based on the exceedance of the triggering stage hc for incipient motion. This criterion

leads to the detection of many events characterized by little sediment transport, thus by

near-zero potential changes. This may certainly create practical problems for retrospective

applications but also in real time when the manager of the station may not want to question the

validity of the base RC too often to account for near-zero changes. An alternative to this may

be to condition the detection of a rating shift to a minimum volume of transported sediments

likely to cause a signi�cant shift.

Finally another possible perspective, but not formalised yet, is the calibration of the triggering

stage through a Bayesian framework. This may allow a more formal inclusion of the prior

knowledge on the unknown parameters and considering some additional uncertainty that is

otherwise ignored.

6.2.2 Performance evaluation using a wide range of hydrometric stations

Another important perspective of this work is the evaluation of the performance of the

proposed methods on a range of di�erent stations. While not described in this manuscript, we

tested a few stations and the tests on a few others are planned in collaboration with several

French and international services (e.g., CNR, EDF, DREAL, SCHAPI, NIWA, USGS, DEAL-

Réunion). The stations to study are characterised by:
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� Di�erent river bed composition: gravel bed or sand beds. We focus in this manuscript on

gravel bed rivers. We suppose that the application of the proposed methods to sand bed

rivers (e.g. the Loire River at Montjean in France) may be more challenging due to the

progressive river bed modi�cation induced by continuous sediment transport and the great

contribution of the suspended sediments to the erosion/deposition processes.

� Di�erent frequency and intensity of shifts (e.g., the case of Séveraissette River at Vilar-

Loubière, France which is highly unstable and the Illinois River at Tinley Creek, USA

which has very small shifts) and input data (such as the available gaugings and recessions

between the shift times). The ability of the segmentation of gaugings to detect rating

shifts depends on the gaugings frequency with respect to the shift frequency, the gaugings

uncertainty and their location along the RC. Two stations have been already processed:

the results of the Wairau River at Barnetts Bank in New Zealand (Figure 6.3b) show

that shifts occur very frequently with respect to the gaugings, thus many periods have

few gaugings only. The results of the Mat River at Escalier, Reunion Island (Figure 6.3a)

show that gaugings are mostly located at low �ows leading to very uncertain base RCs and

challenging segmentation. Moreover the stage-recession analysis depends on the number

of long recessions that are available. Its application to stations with very frequent �oods

(e.g., the Wairau River at Barnetts Bank in New Zealand) may be very challenging and

some improvements may be necessary.

� More complex controls and shifts which may a�ect other RC parameters (e.g., parameter

a due to shifts of the channel width or the roughness coe�cient or the longitudinal slope),

such as braided or meandering rivers (e.g., the Drôme River at Loriol in France, the

Rakaia River at Fighting Hill, in New zealand) or twin-gauge stations (e.g., the Isère River

at Beaumont-Monteux).
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(a)

(b)

Figure 6.3: Proposed segmentation procedure applied to the gaugings of the Mat River at Escalier in

Reunion Island (a) and the Wairau River at Barnetts Bank in New Zealand (b). Dashed vertical lines

indicate the most probable values of the o�set of the lowest control, b1, for each stable period. Solid

vertical lines in panel a) indicate the estimates of b2. Ribbons around each rating curve represent the

95% uncertainty intervals obtained through the Bayesian approach of Mansanarez et al. [2019].
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6.2.3 Development of other tools for potential rating shift detection

6.2.3.1 Correlation with the output of a rainfall-runo� model

The correlation analysis between the discharge time series produced at the station and

the output of a hydrological rainfall-runo� model might be the most promising perspective.

Many watersheds have models of this type. A rating shift may be detected by applying a

segmentation procedure to the series of residuals derived from a linear regression between the

two sets of discharge data. This approach is mentioned in the national (French) hydrometry

quality plan [Puechberty et al., 2017]. Moreover, Lucas [2018] has tested this approach by using

the hydrological model MORDOR [Garçon, 1996]).

Such residuals are characterized by large and strongly varying uncertainties, like the gaugings

residuals (Chapter 2). Thus the segmentation procedure proposed in Chapter 2 would be well

suited to them. However, a big di�erence with gaugings is that the number of data is much larger

and their errors not independent (model bias). The risk may be a bias towards overcon�dence in

model outputs (cf. Sikorska and Renard [2017]). Moreover this tool depends on the availability

of the input climatic data such as the precipitation and of the calibration stream�ow data, and

one problem to solve is how to quantify the model output uncertainty.

6.2.3.2 Correlation with neighboring stations

Also the spatial and temporal analysis of neighboring stations can be a powerful tool.

It consists of comparing the discharge time series of the studied station with the discharge

time series of another station with comparable hydrological behavior (e.g., located upstream

or downstream along the same river, located in a tributary river, located in a neighboring

catchment, etc.). Again, a segmentation procedure can be applied to the residuals. This

approach is discussed in Puechberty et al. [2017] and the issue of characterizing the spatial

correlation of daily stream�ows has been studied by several authors, such as Betterle et al. [2017].

However, it is necessary to consider a su�ciently long time step (e.g., monthly) to ensure

some reasonable degree of correlation between the two stations. Moreover this analysis cannot
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be done without the existence of a hydrologically comparable and stable station, which is never

granted.

This correlation approach could also be used for sites where independent discharge

measurement from a structure (e.g. dam gates / turbines) is available. Usually it is much less

precise than the RC but insensitive to bed evolution, hence "stable" (e.g. the Isère River at

Beaumont-Monteux and the stations of the Vieux-Rhône by-passed channels, in France).

6.2.3.3 Analysis of residuals of the stage-surface velocity relation

Another tool possibly useful for detecting potential shifts in real time during �oods is the

analysis of the residuals between the stage and the surface velocity measured by non contact

techniques such as radar or image velocimetry. This approach has been studied by Thollet et al.

[2017] and Jacob [2014] with encouraging results: Figure 6.4 shows the stage - velocity relation

at a station in France evidencing the existence of at least two distinct periods.

More and more hydrometric/hydrological services start to equip their stations with this

type of instrumentation. Thus the analysis of the stage-surface velocity relation may become a

valuable alternative to the sediment transport proxy analysis since it is based on measurements

and available in real time during �oods.
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Figure 6.4: Stage-velocity radar-based measurements for the Arvan River at Saint-Jean de Maurienne in

France, for the period March-June 2013 (modi�ed from Jacob [2014]).
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6.2.4 Choice of the tools for shift detection/estimation

The framework proposed in Chapter 5 for the real-time management of rating shifts is

conceived to be complemented by any kind of information available in real time: e.g., the

notice of dams built by beavers or swimmers; data logger bugs or instrumental failure reports,

bathymetric surveys; information about sediment mining operations in the river bed or about

works.

Before starting the real-time application shift detection tools must be selected. This choice

may depend on the available data (e.g., gaugings, stage record, bathymetry) but also on the

�ow conditions (�ood, drought), the tool-speci�c limitations and the shift causes. Table 6.1

summarises the conditions of application of the main shift detection tools from the literature

and for those proposed in this manuscript.

The delay for precisely identifying and estimating a rating shift depends on the type of process

causing the shifts: e.g., during �oods the rating change induced by morphological change or due

to hysteresis may occur in a period of a few hours or a few days; during a period of growth of

aquatic vegetation the rating change may occur for several months in a progressive way.
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Table 6.1: Summary of the principal shift detection tools from the literature and those proposed in this

manuscript.

Shift detection

method
Data required Time step

E�ective/

potential

change

Cause of the

detected

change

Shifting RC

parameters

Real-time

applicability

conditions

Tools proposed in this manuscript

Segmentation of

gaugings
Gaugings

Gauging frequency

(e.g. month)
e�ective all all

Availability of

gaugings

Analysis of stage-

recessions
Stage record

Stage frequency

(e.g. 15 min)
e�ective

Processes related

to morphological

changes

� b � of the

lowest controls

During recession

phase only and

starting from few

days after the

�ood peak

Sediment transport

proxy analysis
Stage record

Stage frequency

(e.g. 15 min)
potential

Morphogenic

�oods

� b � of the

lowest controls

During �oods

only

Other tools proposed in the literature and not studied in this manuscript

Comparison with

neighboring stations

[Puechberty et al., 2017]

Discharge time series

of both stations

Week/month

(to ensure

independence

of residuals)

potential all all

Availability of a

� stable � and

comparable

neighboring station

Comparison with

the ouput of a

rainfall-runo�

model

[Puechberty et al., 2017]

Discharge time series

+ climatic data

(e.g. precipitation)

Time step of the model

(Day/week/month)
potential all all

availability of the

inputs (catchment

precipitation

in particular)

Analysis of the

surface velocity

measurements

[Thollet et al., 2017]

Surface velocity +

stage record

Measurements

time step
potential all all

Availability of

surface velocity

data

Analysis of the

minimum

stage values

[�apuszek, 2003]

Stage record year e�ective

Processes related

to morphological

changes

� b � of the

lowest controls

Not suitable for

real time purposes
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6.3 Implementation into operational applications

The transfer of the methods proposed in this manuscript to their operational use may require

additional improvements and adjustments. First of all a pre-treatment or visual checking of

the input data is necessary in order to detect anomalies (e.g., errors due to wrong selection of

rating shift date, sensor fault) and this must be done at di�erent time scales (e.g., month, year)

[Puechberty et al., 2017].

Regarding the computational costs, the tools proposed in this manuscript may take some

time (from days to a week) when applied in retrospective to a long series and when several

tests need to be carried out (e.g., to �nd the most adequate stage-recession model). Instead in

real time the required computations for detecting a shift, updating the RC and providing the

stream�ow estimate are performed within 5 minutes for each time iteration, thus within the

typical time step of the stage records (e.g., 15 minutes). This makes the method applicable

operationally. The graphical interface can certainly be improved and adjusted according to

the speci�c purposes of the services. Moreover, while the method is based on the automatic

detection and estimation of the shifts, their validation and the beginning of a new stable period

may remain partly manual and rely on the hydrologist expertise.

Another possible use of the proposed methods is their integration into existing operational

real-time �ood forecasting systems to provide stream�ow data with more realistically quanti�ed

uncertainty to be assimilated in real time [Ocio et al., 2017; Barbetta et al., 2018]. The proposed

methods may also help improving and optimising the future strategies for gauging campaigns.

Finally, future perspectives can clearly extend the objectives of this manuscript to study

the processes inducing transient rating changes, such as: growth and decline of the aquatic

vegetation, hysteresis, sea tidal e�ects, scour and �ll of the river bed. Some of these processes

are an ongoing study in the literature. A dynamic modelling may be more adequate than the

shift-oriented approach taken in this manuscript, but this requires a better understanding of the

physics behind the processes and of what precisely makes the RC changing over time.
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Détection et estimation de détarages dans les modèles hauteur-débit
pour la quantification du débit des cours d’eau en rétrospectif et en temps réel

Les séries temporelles de débit des rivières sont établies à l’aide de "courbes de tarage", qui sont des
modèles avec les hauteurs d’eau en entrée et les débits en sortie. Malheureusement, de nombreuses stations
hydrométriques ont une relation hauteur-débit instable, notamment à cause de l’évolution du lit de la rivière
lors des crues. Ces "détarages" posent problème à la fois pour l’établissement des séries hydrologiques de
long-terme (analyse rétrospective) et pour la fourniture de données en temps réel, par exemple pour la prévision
des inondations, avec des incertitudes quantifiées et fiables. Les méthodes existantes pour la mise à jour de
la courbe de tarage sont basées sur une analyse statistique des données de calibration (jaugeages) passées
ou sur des règles empiriques. Cette thèse a permis de développer des méthodes originales pour la détection
automatique des détarages et l’estimation de leur amplitude en rétrospectif et en temps réel : une méthode
de segmentation des résidus entre les jaugeages et une courbe de référence, une analyse des récessions du
limnigramme et une détection de détarages potentiels à partir d’un indicateur disponible en temps réel (par
exemple, transport sédimentaire cumulé). L’approche probabiliste permet d’une part de prendre en compte
l’incertitude des informations sur les détarages et d’autre part de quantifier les incertitudes sur les débits
calculés. La combinaison des trois méthodes a été appliquée à la station de l’Ardèche à Meyras, en France, qui
présente des détarages nets après chaque crue importante. Une bonne détection et estimation des détarages
a été observée en rétrospectif et en temps réel. La méthode est générique et, après davantage de validation,
applicable en opérationnel à d’autres sites.

Mots clés : courbes de tarage, analyse Bayésienne, temps réel, détarages, jaugeages, analyse rétrospective

Detection and estimation of stage-discharge rating shifts for retrospec-
tive and real-time streamflow quantification

River discharge time series are established using "rating curves", which are models with stage as input
and discharge as output. Unfortunately, many hydrometric stations have an unstable stage-discharge relation,
particularly because of the change in the river bed during floods. These "rating shifts" pose a problem both
for the establishment of long-term hydrological series (retrospective analysis) and for the delivery of real-time
data, for example for flood forecasting, with quantified and reliable uncertainties. The existing methods for
updating the rating curve are based on a statistical analysis of past calibration data (the gaugings) or on
empirical rules. This thesis aims at developing some original methods for the automatic detection of rating
shifts and the estimation of their magnitude in both retrospective and real time: a method of segmentation of
the residuals between the gaugings and a base rating curve, an analysis of the stage recessions and a method
for detecting potential shifts from an indicator available in real time (e.g. cumulative sediment transport). The
probabilistic approach allows on the one hand to take into account the uncertainty of the information on the
shift and on the other hand to quantify the uncertainties of the calculated streamflow. The combination of the
three methods has been applied to the Ardèche at Meyras, France, which shows net shifts after each major
flood. Good detection and estimation of the rating shift has been observed retrospectively and in real time.
The method is generic and, after further validation, operationally applicable to other sites.

Key words: rating curves, Bayesian analysis, real time, rating shifts, gaugings, retrospective analysis
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