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Abstract. Tackling the difficult problem of estimating spatially distributed hydrological parameters, es-
pecially for floods on ungauged watercourses, this contribution presents a novel seamless regionalization
technique for learning complex regional transfer functions designed for high-resolution hydrological
models. The transfer functions rely on: (i) a multilayer perceptron (MLP) enabling a seamless flow of
gradient computation to employ machine learning (ML) optimization algorithms, or (ii) a multivariate
regression mapping optimized by variational data assimilation algorithms and guided by Bayesian es-
timation, addressing the equifinality issue of feasible solutions. The approach involves incorporating
the inferable regionalization mappings into a differentiable hydrological model and optimizing a cost
function computed on multi-gauge data with accurate adjoint-based spatially distributed gradients.
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1. Introduction

Regardless of the improvements made in hydrological forward models and available data, hy-
drological calibration remains a challenging ill-posed inverse problem faced with the equifinal-
ity (Beven, 2001) of feasible solutions. Most calibration approaches aim to estimate spatially
uniform model parameters for a single gauged catchment, resulting in piecewise constant dis-
continuous parameters fields for adjacent catchments. Moreover, these calibrated parameter are
not transferable to ungauged locations, which represents the majority of the global land surface
(Fekete & Vorosmarty, 2007; Hannah et al., 2011). Therefore, prediction in ungauged basins
remains a key challenge in hydrology (Hrachowitz et al., 2013).

Regionalization approaches are employed to estimate hydrological model parameters in
ungauged locations by transferring hydrological information from gauged locations. In early
studies, the predominant method for regionalization involved individually calibrating catch-
ments and then using multiple regression or interpolation techniques to transfer the calibrated
parameter sets from gauged to ungauged locations (Abdulla & Lettenmaier, 1997; Seibert, 1999;
Parajka et al., 2005; Razavi & Coulibaly, 2013; Parajka et al., 2013). This process can be re-
ferred to as post-regionalization (Samaniego et al., 2010). However, post-regionalization ap-
proaches are limited to lumped parameters by catchment, thus ignoring within-catchment vari-
abilities (Samaniego et al., 2010; Razavi & Coulibaly, 2013). Furthermore, they are generally
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faced with the issue of equifinal parameter sets and hence equifinal estimated transfer laws,
while spatial proximity is more adapted to densely gauged river networks and regions (Oudin
et al., 2008; Reichl et al., 2009). A simultaneous regionalization approach, which involves
optimizing a mapping between physical descriptors and model parameters (cf. Parajka et al.
(2005); Gotzinger & Bardossy (2007)), is able to overcome most of the aforementioned prob-
lems. Typically, a Multiscale Parameter Regionalization (MPR) method, combining descriptors
upscaling and transfer functions in form of multi-linear regressions, implemented within a spa-
tially distributed multiscale hydrological model (mHm), has been proposed by Samaniego et
al. (2010), and later applied to other gridded hydrological models in several applicative studies
(e.g., Mizukami et al. (2017); Beck et al. (2020)). In all the above studies, state of the art op-
timization algorithms are used, especially Shuffle Complex Evolution algorithm (SCE) (Duan
et al., 1992) in Mizukami et al. (2017) or Distributed Evolutionary Algorithms (DEAP) (Fortin
et al., 2012) in Beck et al. (2020). Nevertheless, those optimization algorithms are limited to
low-dimensional controls, which imposes the use of a limited number of descriptors in lumped
multivariate regionalization mappings, and thus restricts the capability to fully exploit the large
amount of information available from multiple data sources with flexible formulations and ad-
equate spatial rigidity.

In Huynh et al. (2023), efficient regionalization algorithms have been proposed for spatially
distributed hydrological modeling based on descriptors-to-parameters mappings with neural
networks or multivariate regressions in a variational data assimilation framework. Despite the
strong spatial constrain and regularizing effect introduced via regionalization mappings, some
sensitivity to prior remains in context of equifinality (model structural equifinality plus spatial
equifinality) and its inference is explored here using the Bayesian weighting approach proposed
in Chelil et al. (2022); Gejadze et al. (2022).

This paper presents a novel seamless regionalization method for learning the regionaliza-
tion mapping between physical data and conceptual parameters of spatially distributed hydro-
logical models using information from multi-gauge river flow observations and high-resolution
physical descriptors. Two approaches are studied to infer the regionalization mapping:

* Bayesian-Guided Multivariate Regional Regression (BGM2R): a multivariate polynomial
regression approach, which combines high-dimensional optimization algorithms guided by
a Bayesian estimation on the first guess;

* Artificial Neural Network Regionalization (ANNR) enabling a ’seamless flow of gradient
computation” and employing ML-based optimizers.

The proposed algorithms are implemented in the SMASH platform (see online docu-
mentation and tutorials at https://smash.recover.inrae.fr) available on public GitHub (https://
github.com/DassHydro/smash).

2. Methodology

The full forward model and the optimization process are schematized in Figure 1. The forward
model, i.e., the composition of the regionalization mapping and of the hydrological model, is
the one differentiated and used in the inverse algorithm.

2.1. Forward Model and Calibration Cost Function

Let us consider observed discharge time series @ (t) at Ng observation cells of coordinates
zy, € €, g € 1..Ng with No > 1. For each observation cell, the corresponding gauged
upstream sub-catchment is denoted €2, so that €2,,,,, = Q\ (LJ;V:G1 Qg) is the remaining ungauged
part of the whole spatial domain (2. Then, the rainfall and potential evapotranspiration fields
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Figure 1. Flowchart of inverse algorithms for the full forward model consisting of a conceptual hydrological model
(spatio-temporal regular grid at 1 km? and 1 h) and a regionalization mapping.

are respectively denoted as P (z,t) and E (x,t), Vo € Q. The classical forward model M,
is a dynamic operator projecting the input fields P (z,t) and E (z,t), given an input drainage
plan Dq, (x), onto the discharge field Q) (z,t) and states fields h (x, t) written as a multivariate
function:

(h,Q) (z,t) = M, [Dq (z), P (z,t"), E (z,t'),h(x,0),0 (z),t],¥(z,t') € Q2 x [0,t] (1)

where 6 is the Ny-dimensional vector of model parameters 2D fields that we aim to estimate
regionally with the new algorithms proposed below, and h is the Ng-dimensional vector of
internal model states. In this study, the distributed hydrological model M., is a parsimonious
GR-like conceptual structure (GR operators (Perrin et al., 2003) used in our grid based model
with simple routing) with the parameters vector 8 () = (c,(2), ¢ (2), kewe(2), 1-(2))" , V2 €
(2, which is the ”gr-b” structure presented in Colleoni et al. (2023).

Now, the full forward model M is composed of the distributed hydrological model M,.,

on top of which is applied a regionalization operator F to estimate hydrological parameters 6
such that:

M =M, .. 6()=Fu(D(x),p), Ve eQ @)

This allows to constrain spatially and explain these spatial fields of conceptual model parameters
0 () from physical descriptors D(z). The regionalization operator Fg being a descriptor-to-
parameters mapping, with D the Np-dimensional vector of physical descriptor maps covering
2, and p the vector of tunable regionalization parameters that will be defined later.

A calibration cost function is defined in order to measure the misfit between simulated and
observed discharge time series for multiple gauged cells. Here, a convex differentiable objective
function is defined as an observation term that measures the difference between observed and
simulated quantities in multi-gauges J = Z;Vfl wyJ; with w, a physical weighting function,
J, alocal quadratic metric "at the station” (e.g., 1 — NSE) involving the response of the direct
model. Thus, J depends on the control vector p through the direct model M. In this work, we
simply use w, = NLG for multiple gauges calibration. The regional optimization problem writes
as follows:

p = argmin J (p) 3)
p

2.2. Regional Calibration with BGMR

In this case, the regionalization mapping Fr = P with tunable parameter p consists in a
multivariate polynomial regression between input physical descriptors D(z) and hydrological
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model parameters 6(z, D, p) := P (D(z), p) such that:

Np

Qk(xa D7pk) = Sk (ak’,ﬂ + Zak,dng’d(x)) 5 Vk € [1N9],Vas =Y/ (4)

d=1

with sy (.) a Sigmoid-based transformation imposing bound constraints in the direct hydrologi-
cal model. The lower and upper bounds are assumed to be spatially uniform for each parameter

T
field 6; of the hydrological model. The optimization of the control vector p = [(Pk)]kvil] =

N T
{(ak,o, (ak’d)év%)k:} , that is solving problem 3, is performed using the L-BFGS-B algo-

rithm (Zhu et al., 1997), adapted to high-dimensional controls, without bound constraints on
the oy, whereas the exponents ;4 is simply fixed to 1 (multi-linear regionalization). This
algorithm requires the gradient of the cost function with respect to the sought parameters V,J.
This gradient is computed by solving the adjoint model, which is obtained by automatic differ-
entiation using the Tapenade engine (Hascoet & Pascual, 2013). The entire process is imple-
mented in the SMASH Fortran source code (fast solver, adjoint model obtained by automatic
differentiation with TAPENADE), where the full forward model M = M, (., P (.)) is a com-
position of both the hydrological model and the polynomial descriptors-to-parameters mapping.
The convergence criterion involves reaching a maximum iteration limit or meeting conditions
related to cost function change or gradient magnitude.

It is worth noting that determining a background value p* is important for the conver-
gence of this algorithm. It is used as a starting point for the optimization, and is defined

from a spatially uniform prior 8" as p* = [k = s;" (6" ) . (aka = 0, Bra = 1)}T V(k,d) €
[1..Ng] x [1..Np], where s, '(2) = In (%) is the inverse Sigmoid. The spatially uniform

low-dimensional (LD) prior 6" is determined considering the cost function without regionaliza-
tion, i.e., M = M, and p = 6, and classically using a derivative-free global (in terms of “’full
parameter space exploration”) optimization algorithm (SBS in Michel (1989)).

A Bayesian-like estimator (cf. Gejadze et al. (2022); Chelil et al. (2022)) is used to look
at the mean of the posterior distribution f (0|Q*) that is more stable in context of equifi-
nality than searching its mode (inverse problem 3, maximum a posteriori probability (MAP)
search is the essence of variational data assimilation). A prior probability distribution fj is
used to generate a sample of spatially uniform parameter sets 8;,V: € 1..N within the hyper-
cube defined by parameters bounds [Ix, ux|, Vk € 1..Ny. The likelihood function is defined as:
L& = e~2"Ui/Jun=1)" where « is a parameter controlling the decay rate of this function that
compares the value of J; = J(0;) to J,;,, the minimum value of J; over the sample of N
parameter sets. The posterior ensemble mean and variance are computed as follows:

N
07" = %> (£.-0:0 f5(6)))

Var (67) = %Z —6"")© (6, —-0") © f3(6)))

=1

&)

where K = Z L' - f7(8;) and” ®” denotes the Hadamard product - simple scalar product be-
i=1
tween vectors here but usable with higher dimensional controls. The parameter « is determined
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using the L-curve approach, considering a parametric curve {J (6"%), D"}, a = —1,...,10,
where D = (Var (9*’a))_1 ©) (9*’a — 90> ® (9*’a — 90> is the probabilistic (Mahalanobis)

distance between the estimate 8" and the average prior 8° = L3N 0,. The value of « is
sought in a L-curve “corner” such that it minimizes both .J (6"“) and D*.

2.3. Regional Calibration with ANNR

In this case, an ANN-based regional mapping Fr = N, consisting of a MLP, aims to learn the
descriptors-to-parameters mapping such that:

0(x,D,p) =N (D(z), W,b) Vr € Q (6)

where W and b are respectively weights and biases of the neural network, whose output layer
consists in a scaling transformation based on the Sigmoid function in order to impose bound
constraints on each hydrological parameters. The regional control vector p = [W, b]T is opti-
mized by ML-based optimization algorithms (e.g., Adam), that uses spatial gradients computed
by the adjoint model to minimize the cost function J(p) = J(Q*, M,.(., 8 = N(D, p))) in
the present case.

This cost function depends on the forward model M = M, (., N (.)), which is composed
of two components in its numerical implementation: (i) an ANN implemented in Python, which
produces the output 0 served as input for (ii) the hydrological model M, implemented in For-
tran. To optimize J, we need its gradients with respect to p. The main technical difficulty here
is achieving a “seamless flow of gradients” through back-propagation. To overcome this, we
divide the gradients into two parts. First, VgJ can be computed via the automatic differen-
tiation applied to the Fortran code corresponding to M,,. Then, V0 is simply obtained by
analytical calculus applicable given the explicit architecture of the ANN, consisting of a MLP.
The convergence criteria is simply determined by reaching the maximum number of training
iterations.

3. Results

3.1. Numerical experiment

The proposed alorithms are tested on a highly challenging regionalization case from Huynh et
al. (2023): a high-resolution regional modeling of a flash flood prone area located in the South-
East of France, with heterogeneous physical properties including karstic areas. Multiple gauges
downstream of nested and independent catchments are simultaneously considered, enabling
multi-gauge optimization. A total of 11 gauged catchments are employed as “donor” catch-
ments for multi-gauge calibration (global cost function), while 9 other catchments are treated
as pseudo-ungauged for spatial validation to assess regionalization capabilities of the proposed
algorithms. The time series of observed discharge on donor catchments are of the same length
but the method by design enables to work with more sparse and heterogeneous data. In this
study, a set of 7 physical descriptors (see Table 1) available over the whole French territory is
used to learn the regional transfer functions.

In the following, we compare and analyze: (i) local uniform p = 6 and full spatially
distributed p = 6 (z) calibrations for each gauges, that are respectively under- and over-
parameterized hydrological optimization problems, but are served as reference performances
("Uniform (local)” and "Distributed (local)”’); multigauge regional calibrations with (ii) lumped
model parameters p = 6 which somehow represents “level 07 regionalization ("UR”); (ii1) a
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Table 1. Physical descriptors used for regionalization methods (see Huynh et al. (2023) for descriptor choice).

Descriptor Type Unit Source
Slope Topography m  EU-DEM, Copernicus (2016)
Drainage density Morphology - Organde et al. (2013)
Karst index Influence % Caruso et al. (2013)
Woodland percentage Land use %  CLC European Union (2012)
Urbanization rate Land use %  CLC European Union (2012)
Soil water storage ~ Hydrogeology mm Poncelet (2016)
Soil moisture storage Hydrogeology % Odry (2017)

. . . . . - T . . .
multivariate linear mapping (i.e., p = [ay 0, (o, 1)]" ) using a classical first guess obtained by
SBS algorithm ("M2R”), or guided by a Bayesian estimation ("BGM2R”); and (iv) a MLP (i.e.,
p = [W,b]") "ANNR™).

Two study periods, namely P1 (August 2011 — July 2015) and P2 (August 2015 — July
2019), are considered for split sample testing. A two-fold cross-temporal calibration approach
is employed, where the models are calibrated on one period and validated on the other pe-
riod. In each case, we consider three types of validation: spatial validation (performance in
pseudo-ungauged catchments during the calibration period), temporal validation (performance
in gauged catchments during the validation period), and spatio-temporal validation (perfor-
mance in pseudo-ungauged catchments during the validation period). Note that no warm-up
of the forward model is performed for this calibration algorithms comparison.

3.2. Regionalization performances and analysis

The performance of all calibration and regionalization methods is presented in Figure 2. Un-
surprisingly, spatially uniform calibration (UR) leads to limited performance in calibration and
poor performance in regionalization, especially when compared to the reference local spatially
distributed calibration that is overparameterized. The regionalization methods, which incor-
porate information from multi-gauge discharge as well as physical descriptor maps, all yield
relatively satisfying performances in calibration and temporal validation at pseudo-ungauged
sites (median NSE scores higher than 0.4 when calibrated on P1). The regionalization approach
based on ANN (ANNR) achieves the best results for both gauged and pseudo-ungauged catch-
ments. In spatio-temporal validation, the most challenging case especially on this zone that
is difficult to model, performance are relatively low, with regionalization methods or spatially
uniform regionalization (UR/SBS-FG) and further investigations are required.

Regarding the determination of prior parameter sets for the multi-linear regionalization
mapping, the Bayesian estimation approach (LDB-FG) demonstrates fairly good performance,
comparable to that obtained with the global heuristic algorithm (SBS-FG), in calibration and
spatial validation, with only minor differences in temporal validation. We believe that this is
reflective of the importance of exploring a Bayesian approach for the definition of the cost func-
tion, which would enable intrinsic weighting of model misfits to different gauged hydrological
behaviors. Moreover, when considering the performances of M2R and BGM2R on P1 (upper
sub-figure of Figure 2), the Bayesian approach exhibits markedly higher performance in calibra-
tion and validations, while relatively similar performances are observed on P2 (lower sub-figure
of Figure 2). This difference may be attributed to variations in hydrological information on P1
and potentially higher data errors, which have a lesser impact on the Bayesian approach.

Table 2 represents several statistical quantities of the distributed parameter maps obtained
through different regionalization approaches. All methods result in distinct parameter maps and
varying levels of temporal stability (see Figure 3). The ANNR leads to the most robust inference
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Figure 2. Performance of all calibration and regionalization methods when calibrated on P1 (upper sub-figure)
and on P2 (lower sub-figure). BGM2R uses the first guess obtained by Low-Dimensional Bayesian estimation
(LDB-FG), while the first guess of M2R is obtained by the SBS algorithm (SBS-FG), which also represents the
solution of the regionalization method with lumped parameters (UR). n denotes the number of study catchments.

over P1 and P2, with remarkably stable average parameter values as well as spatial standard
deviation over time. The priors inferred with SBS-FG or LDB-FG exhibit slight differences and
also lead to a different optimum during regionalization for P1. Interestingly, the opposite trend
is observed for P2, where data uncertainty and model adequacy might be better, resulting in
similar functioning points after regionalization despite substantially different priors determined
with SBS-FG or LDB-FG.

Table 2. The optimal parameters obtained by different methods for each calibration period. Spatially distributed
parameters are represented as the median (mean, std). The rows in italic and smaller text present the spatially
uniform first guess obtained by the SBS algorithm (SBS-FG) used for M2R, and the Low-Dimensional Bayesian
estimation (LDB-FG) used for BGM2R.

Method (Cal period) cp Cft Keze l,
UR/SBS-FG (P1) 2000 470.88 3.04 55.12
UR/SBS-FG (P2) 322.68 239.65 -3.18 45.53

M2R (P1) 2000 (2000, 0) 113.57 (397.78, 436.27)  -0.15 (-3.8, 8.35) 52.79 (83.63, 79.27)
M2R (P2) 398.64 (658.28, 623.15) 338.41 (433.16,351.08) -0.53 (-1.56,5.29) 94.16 (100.66, 75.71)
LDB-FG (P1) 1917.74 527.77 2.9 72.32
LDB-FG (P2) 138.53 517.6 -13.04 53.71

BGM2R (P1) 76.02 (700.93, 869.81)  599.93 (540.72, 404.87) -13.33 (-10.0,9.94)  63.47 (92.67, 87.33)
BGM2R (P2) 396.71 (651.86, 607.05) 348.38 (439.31,353.62) -0.57 (-1.47,4.98)  95.65 (100.98, 78.13)
ANNR (P1) 369.87 (700.95, 737.21)  393.52 (492.71,334.31) -3.63(-6.92,7.58)  56.63 (71.04, 62.52)
ANNR (P2) 404.13 (593.4,477.85)  510.9 (444.66,220.29)  -2.23 (-2.12,2.34)  62.72 (67.28, 32.5)
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Figure 3. Normalized temporal stability over the periods P1 and P2 of the optimal distributed parameters
él(CPZ)*é](CPl)

P k € [1..Ny], for the three regionalization approaches using physical descriptors.

Last but not least, during calibration on P1, M2R and BGM2R lead to a negative exchange
coefficient (k... < 0), despite starting from priors with positive exchange values (3.04 for SBS-
FG (P1) and 2.9 for LDB-FG (P1)); AANR also lead to negative exchange. This intriguing
result, of reaching systematically significant negative exchange, is particularly noteworthy be-
cause the exchange coefficient directly impacts mass conservation. These findings relate to
those on flash floods water balance sensitivity and regionalization based on geological descrip-
tors presented by Garambois et al. (2015) for catchments in the same and nearby areas. Their
event process-oriented and conservative model required an increase in modeled soil volume,
while pedological and geological descriptors provided valuable constraining information, espe-
cially in the context of flash floods.

4. Conclusion

A Bayesian calibration algorithm has been tested in this study, on top of our Hybrid Variational
Data Assimilation Parameter Regionalization (HVDA-PR) approach enabling seamless region-
alization in spatialized hydrology. The methods were tested in a challenging flash flood-prone
area in the South-East of France, characterized by diverse physical properties and hydrological
responses. Overall, the methods demonstrated satisfactory performance in several aspects: (1)
accurate modeling of discharge at both gauged and pseudo-ungauged sites, and (ii) effective
identification of conceptual parameters and extraction of information from physical descrip-
tors. Notably, the ANN-based regionalization method outperformed other approaches in terms
of discharge accuracy and parameter stability. Bayesian prior estimation exhibited good per-
formance and relative robustness, even in challenging cases like calibration on the period P1,
where data uncertainty and model inadequacy were assumed to be higher. While the Bayesian
method is computationally more demanding than traditional low-dimensional calibration algo-
rithms, it can be efficiently parallelized. Moreover, the Bayesian approach can be extended to
higher-dimensional contexts, such as determining semi-distributed priors and exploring spatial
equifinality using our variational data assimilation algorithms. Interestingly, in contrast to the
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ANN, the regression methods provided insights into more complex modeling situations and po-
tential data-model discrepancies. This highlights the importance of maintaining both “’classical”
approaches and Al-based solutions in research and applications, particularly in the continuous
development of physically and mathematically interpretable methodologies.
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