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Context

Challenging problem: estimating parameters of spatially distributed hydrological models, requiring spatial
constraints given relatively sparse discharge data, in view to model ungauged catchments.

Approach: enhance distributed and regionalized hydrological modeling (spatial extrapolation) by making
the most of available information, especially physical descriptor maps. This includes adapting the
complexity of forward and inverse approaches to ensure consistency between the model and data, by

taking advantage of statistical learning.

Presentation outline:

-> New approaches for learning spatially distributed parameters of a differentiable hydrological model:

descriptor to parameters operators, Bayesian like estimator for first guess in equifinality context.
-> Study equifinality within a high-dimensional optimization framework adapted to distributed models.
-> Application of the method in a multi-gauge calibration setup on flash flood prone area with com
hydrological responses.

-> Perspectives on uncertainty quantification and correction, learnable hydrological operators, both in the

structural modeling and the content of the data

.
Methodology

-> Parameter regionalization within differentiable distributed hydrological
model using adjoint-based gradient and high dimensional optimization
algorithms

-> Learnable regional mappings based on: (i) multilayer perceptron (ANNR)
and (ii) Bayesian-guided multivariate regression (BGM2R)

-> Combination of numerical adjoint model and neural network Jacobian,
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enabling high-dimensional spatialized optimization

-> Combination of Bayesian-like estimator and VDA algorithms in the
context of “resulting parametric equifinality” when dealing with
spatialized controls and high-dimensional optimization problems

-> Multi-gauge calibration cost function accounting for information from
multiple observation sites

Mathematical ingredients

Forward model

The classical forward model M,., is a dynamic operator projecting the input fields P (x, t)
and FE (x,t) onto the discharge field ) (x,t) and states fields h (x, t) written as:

(i, Q) (%, 1) = M,, [Palg), P(E.1).,.B(&1),BE0) .0 (%),.5 .Y t) e 0,i]

where 60 is the Ny-dimensional vector of model parameters 2D fields to be estimated regionally
and h 1s the Ng-dimensional vector of internal model states. The full forward model M is com-
posed of the distributed hydrological model M,.,. on top of which is applied a regionalization
operator F5 to estimate hydrological parameters @ (x) using physical descriptors D (x):
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Regionalization mappings

Multivariate polynomial regression (following Gotzinger and Bdrdossy (2007),
Samaniego et al. 2010):
Sk (

with s, (.) a Sigmoid-based transformation imposing bound constraints in the direct hydrologi-
cal model. The lower and upper bounds are assumed to be spatially uniform for each parameter
field ;. of the hydrological model.
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Multilayer perceptron:
O(z,D,p) =N (D(x), W,b) ,Vx € Q
where W and b are respectively weights and biases of the neural network, whose output layer

consists 1n a scaling transformation based on the Sigmoid function in order to impose bound
constraints on each hydrological parameters.

Numerical results
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with w, a weighting function, J; a local quadratic metric “at the station” (e.g., 1 — NSE)
involving the response of the direct model M.

Bayesian-like estimator

A Bayesian-like estimator (following Chelil et al. 2022, Gejadze et al. 2023) is used to look at the
mean of the posterior distribution of the model parameters that is more stable in context of
equifinality than searching its mode, maximum a posteriori probability (MAP) search is the essence
of variational data assimilation)

A prior probability distribution f; is used to generate a sample of spatially uniform param-
eter sets 8;,Vi € 1..N within the hypercube defined by parameters bounds I, ux|, Vk € 1..Ny.
The likelihood function is defined as: £ = ¢ 2"(/i// wmin=1)" \where « is a parameter controlling
the decay rate of this function that compares the value of J;, = J (8;) to J,,;, the minimum
value of J; over the sample of NV parameter sets. The posterior ensemble mean and variance are
computed as follows:
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where K = Z L' - f3(0;) and ” ® 7 denotes the Hadamard product. The parameter o
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1s determined using the L-curve approach, considering a parametric curve {J (9*’(1) ,D“},
ad = —1. :::10. where D* (Var (9*’“))_1 ® (é*’a — 90> ® (é*"a — 90) 1s the probabilistic

. . . — %0 " =)
(Mahalanobis) distance between the estimate & " and the average prior 8 = ~ S . 0;. The
value of « 1s sought in a L-curve “corner” such that it minimizes both J (0*’0) and D“.
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Normalized temporal stability over the periods P1 and P2
of the optimal distributed parameters for the three
regionalization approaches using physical descriptors.

The ANNR leads to the most robust
inference over P1 and P2, with
remarkably stable average parameter
values as well as spatial standard
deviation over time. The priors inferred
with SBS-FG or LDB-FG exhibit slight
differences and also lead to a different
optimum during regionalization for P1.
The opposite trend is observed for P2,
where data uncertainty and model
adequacy might be better, resulting in
similar  functioning  points  after
regionalization despite substantially
different priors determined with SBS-FG
or LDB-FG.
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introducing “learnable” model structures for hydrological flux production at the pixel level:

= . e o . o dh
Calibration Spatial Validation Temporal Validation Spatio-Temporal Validation d h B P B N N 1 (187 hp) . f]. (I.S, hp) s N N 1 (I.S, hp)
Performance of all calibration and regionalization methods when calibrated on P1 (upper sub-figure) and on P2 - dh f¢ - kY
(lower sub-figure). BGMZ2R uses the first guess obtained by Low-Dimensional Bayesian estimation (LDB-FG), while dt dt N N 2 (I S hp’ h I t) f 2 (I S hp, h ¥ t) N N 2 (I S hp, h ft)
the first guess of M2R is obtained by the SBS algorithm (SBS-FG), which also represents the solution of the -
regionalization method with lumped parameters (UR). n denotes the number of study catchments. where the deterministic ; ]
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incorporate information from physical descriptor maps, all yield relatively satisfying R !

transfer:
performances in calibration and temporal validation at pseudo-ungauged sites

(median NSE scores higher than 0.4 when calibrated on P1). The regionalization
approach ANNR achieves the best results for both gauged and pseudo-ungauged
catchments. In spatio-temporal validation, the most challenging case especially on
this zone that is difficult to model, performance are relatively low, with
regionalization methods or spatially uniform regionalization (UR/SBS-FG) and
further investigations are required.
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-> Stochastic process for correcting modeling errors at multiple temporal scales:
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